首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Glucan phosphorylase, branching enzyme, and 4-α-glucanotransferase were employed to produce glucose polymers with controlled molecular size and structures. Linear or branched glucan was produced from glucose-1-phosphate by glucan phosphorylase alone or together with bracnhing enzyme, where the molecular weight of linear glucan was strictly controlled by the glucose-1-phosphate/primer molar ratio, and the branching pattern by the relative branching enzyme/glucan phosphorylase activity ratio. Cyclic glucans were produced by the cyclization reaction of 5-αglucanotransferases and branching enzyme on amylose and amylopectin. Molecular size and structure of cyclic glucan was controlled by the type of enyzyme and substrate chosen and by the reaction conditions. This in vitro approach can be used to manufacture novel glucose polymers with applicable value.  相似文献   

2.
When amylose was synthesized using potato phosphorylase in the presence of amylose complexing lipids, monodisperse populations of amylose–lipid complexes were formed. Enzyme dosage and glucose-1-phosphate (glc-1-P)/primer ratio influenced the reaction rate of the enzymic synthesis, presumably by changing the balance between amylose synthesis and amylose–lipid complexation and precipitation, and impacted the molecular weight of the complexes. Lipid characteristics affected the dissociation properties and amylose chain lengths of the amylose–lipid complexes presumably by determining the minimal amylose chain length necessary for complexation and precipitation. Tailor made short chain amylose–lipid complexes can hence be produced by choosing the appropriate reaction conditions. We propose a synthesis mechanism in which the primer is elongated until an amylose chain is obtained which is of sufficient length to complex a first lipid. Further chain extension then occurs, together with subsequent complexation until the complex becomes insoluble and precipitates.  相似文献   

3.
Phosphoglucomutase Mutants of Escherichia coli K-12   总被引:16,自引:11,他引:5       下载免费PDF全文
Bacteria with strongly depressed phosphoglucomutase (EC 2.7.5.1) activity are found among the mutants of Escherichia coli which, when grown on maltose, accumulate sufficient amylose to be detectable by iodine staining. These pgm mutants grow poorly on galactose but also accumulate amylose on this carbon source. Growth on lactose does not produce high amylose but, instead, results in the induction of the enzymes of maltose metabolism, presumably by accumulation of maltose. These facts suggest that the catabolism of glucose-1-phosphate is strongly depressed in pgm mutants, although not completely abolished. Anabolism of glucose-1-phosphate is also strongly depressed, since amino acid- or glucose-grown pgm mutants are sensitive to phage C21, indicating a deficiency in the biosynthesis of uridine diphosphoglucose or uridine diphosphogalactose, or both. All pgm mutations isolated map at about 16 min on the genetic map, between purE and the gal operon.  相似文献   

4.
Starch plays a major role as a transitory and long-term storage compound in higher plants, and therefore is of prime importance for plant growth and development. Additionally, starch serves as a widely used material for a variety of industrial uses. The formation of starch can arbitrarily be divided into three types of event: (I) those leading to the supply of glucose-1-phosphate in the plastids; (II) the conversion of glucose-1-phosphate to ADP-glucose catalysed by the enzyme ADP-glucose pyrophosphorylase; and (III) the enzymatic reactions converting ADP-glucose to long-chain glucans (amylopectin, amylose). In recent years, numerous cDNA and genomic sequences encoding enzymes involved in starch metabolism have been identified. Some of these have been used to down-regulate enzyme activities via the antisense RNA technique. Additionally, bacterial genes have been ectopically expressed in transgenic plants in order to increase corresponding enzyme activities. By modulating the activity of ADP-glucose pyrophosphorylase in plastids, it was possible to decrease and increase, respectively, the starch content in source and sink organs of transgenic plants. In addition, down-regulation of granule-bound starch synthase (isoform I) resulted in the production of starch that was almost completely free of amylose. Further experiments aimed to modulate starch structure are currently underway and will briefly be discussed.  相似文献   

5.
Summary To determine the mechanism of the glucose stimulation, glucose or glucose-6-phospate was added to dilute heart extracts in the presence or absence of AMP. The intracellular glucose, tissue glucose-6-phosphate, and tissue AMP concentrations were also determined in 24-h starved animals given glucose; 24-h starved animals given insulin as well as diabetic starved and diabetic starved insulin-treated animals were also studied.The A0.5 for glucose stimulation of cardiac phosphorylase phosphatase activity was approximately 1 .2 mM. The A0.5 for glucose-6-phosphate was approximately 0.02 mM. The glucose-6-phosphate concentration in all animals exceeded the Ao.5 by 10-fold. However, the intracellular glucose concentration in the glucose-treated, insulin-treated, diabetic, and diabetic insulin-treated rats was in the range of the A0.5 for stimulation of phosphorylase phosphatase activity. AMP completely inhibited phosphorylase phosphatase activity at a concentration of 0.2 mM. Physiological concentrations of glucose and glucose-6-phosphate partially reversed this inhibition. Administration of glucose or insulin resulted in an increase in intracellular glucose concentration, an increase in tissue glucose-6-phosphate and a decrease in tissue AMP concentrations. These data suggest that glucose may be a physiological regulator of phosphorylase phosphatase in heart muscle as it is in liver.Recipient ofaMedical InvestigatorshipAward from theVeterans Administration.  相似文献   

6.
R-state monoclinic P2(1) crystals of phosphorylase have been shown to be catalytically active in the presence of an oligosaccharide primer and glucose-1-phosphate in 0.9 M ammonium sulfate, 10 mM beta-glycerophosphate, 0.5 mM EDTA, and 1 mM dithiothreitol, the medium in which the crystals are grown or equilibrated for crystallographic studies (Barford, D. & Johnson, L.N., 1989, Nature 360, 609-616; Barford, D., Hu, S.-H., & Johnson, L.N., 1991, J. Mol. Biol. 218, 233-260). Kinetic data suggest that the activity of crystalline tetrameric phosphorylase is similar to that determined in solution for the enzyme tetramer. However, large differences were found in the maximal velocities for both oligosaccharide or glucose-1-phosphate substrates between the soluble dimeric and crystalline tetrameric enzyme.  相似文献   

7.
Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase   总被引:3,自引:0,他引:3  
Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase has found many applications in biomedical research. However, up to several years ago, the methods used often appeared to be unreliable because many artefacts occurred during processing and staining of tissue sections or cells. The development of histochemical methods preventing loss or redistribution of the enzyme by using either polyvinyl alcohol as a stabilizer or a semipermeable membrane interposed between tissue section and incubation medium, has lead to progress in the topochemical localization of glucose-6-phosphate dehydrogenase. Optimization of incubation conditions has further increased the precision of histochemical methods. Precise cytochemical methods have been developed either by the use of a polyacrylamide carrier in which individual cells have been incorporated before staining or by including polyvinyl alcohol in the incubation medium. In the present text, these methods for the histochemical and cytochemical localization of glucose-6-phosphate dehydrogenase for light microscopical and electron microscopical purposes are extensively discussed along with immunocytochemical techniques. Moreover, the validity of the staining methods is considered both for the localization of glucose-6-phosphate dehydrogenase activity in cells and tissues and for cytophotometric analysis. Finally, many applications of the methods are reviewed in the fields of functional heterogeneity of tissues, early diagnosis of carcinoma, effects of xenobiotics on cellular metabolism, diagnosis of inherited glucose-6-phosphate dehydrogenase deficiency, analysis of steroid-production in reproductive organs, and quality control of oocytes of mammals. It is concluded that the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase is of highly significant value in the study of diseased tissues. In many cases, the first pathological change is an increase in glucose-6-phosphate dehydrogenase activity and detection of these early changes in a few cells by histochemical means only, enables prediction of other subsequent abnormal metabolic events. Analysis of glucose-6-phosphate dehydrogenase deficiency in erythrocytes has been improved as well by the development of cytochemical tools. Heterozygous deficiency can now be detected in a reliable way. Cell biological studies of development or maturation of various tissues or cells have profited from the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Mutants of Escherichia coli deficient in phosphoglucomutase accumulate amylose when the cells are grown on maltose or galactose as carbon source. In the presence of physiological levels of phosphoglucomutase, most of the sugar is catabolized, leading to strongly reduced levels of amylose accumulation. By varying the expression level of heterologous phosphoglucomutase, we show that the minimum level needed to block amylose accumulation corresponds to a phosphoglucomutase activity of 150-600 nmole substrate transformed per min per mg of total soluble protein. Mutant phosphoglucomutases with strongly reduced Vmax values and increased Km values for the substrate glucose-1-phosphate or the co-substrate glucose-1,6-diphosphate, could also reduce amylose accumulation, but much higher enzyme expression levels were required.  相似文献   

9.
The pharmacological properties of 1,4-dideoxy-1,4-imino- d -arabinitol (DAB), a potent inhibitor of glycogen phosphorylase and synthase activity in liver preparations, were characterized in different brain tissue preparations as a prerequisite for using it as a tool to investigate brain glycogen metabolism. Its inhibitory effect on glycogen phosphorylase was studied in homogenates of brain tissue and astrocytes and IC50-values close to 400 nM were found. However, the concentration of DAB needed for inhibition of glycogen shunt activity, i.e. glucose metabolism via glycogen, in intact astrocytes was almost three orders of magnitude higher. Additionally, such complete inhibition required a pre-incubation period, a finding possibly reflecting a limited permeability of the astrocytic membrane. DAB did not affect the accumulation of 2-deoxyglucose-6-phosphate indicating that the transport of DAB is not mediated by the glucose transporter. DAB had no effect on enzymes involving glucose-6-phosphate, i.e. glucose-6-phosphate dehydrogenase, phosphoglucoisomerase and hexokinase. Furthermore, DAB was evaluated in a functional preparation of the isolated mouse optic nerve, in which its presence severely reduced the ability to sustain evoked compound action potentials in the absence of glucose, a condition in which glycogen serves as an important energy substrate. Based on the experimental findings, DAB can be used to evaluate glycogen shunt activity and its functional importance in intact brain tissue and cells at a concentration of 300–1000 μM and a pre-incubation period of 1 h.  相似文献   

10.
Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glucose-6-phosphatase were quantitatively determined for the first time in glycogen body tissue from late embryonic and neonatal chicks. For comparative purposes, the activities of these enzymes were examined also in liver and skeletal muscle from pre- and post-hatched chicks. The present data show that both the embryonic and neonatal glycogen body lack glucose-6-phosphatase, but contain relatively high levels of glucose-6-phosphate dehydrogenase. The activity of each dehydrogenase in either embryonic or neonatal glycogen body tissue is two- to five-fold greater than that found in muscle or liver from pre- or post-hatched chicks. The relatively high activities observed for both dehydrogenases in the glycogen body, together with the absence of glucose-6-phosphatase activity in that tissue, suggest that the direct oxidative pathway (pentose phosphate cycle) of glucose metabolism is a functionally significant route for glycogen utilization in the glycogen body. It is hypothesized that the glycogen body is metabolically linked to lipid synthesis and myelin formation in the central nervous system of the avian embryo.  相似文献   

11.
An enzymatic production method for dTDP-4-keto-6-deoxy-D-glucose, a key intermediate of various deoxysugars in antibiotics, was developed starting from dTMP, acetyl phosphate, and glucose-1-phosphate. Four enzymes, i.e., TMP kinase, acetate kinase, dTDP-glucose synthase, and dTDP-D-glucose 4,6-dehydratase' were overexpressed using T7 promoter system in the E. coli BL21 strain, and the dTDP-4-keto-6-deoxy-D-glucose was synthesized by using the enzyme extracts in one-pot batch system. When 20 mM dTMP of initial concentration was used, Mg2+ ion, acetyl phosphate, and glucose-1-phosphate concentrations were optimized. About 95% conversion yield of dTDP-4-keto-6-deoxy-D-glucose was obtained based on initial dTMP concentration at 20 mM dTMP, 1 mM ATP, 60 mM acetyl phosphate, 80 mM glucose-1-phosphate, and 20 mM MgCl(2). The rate-limiting step in this multiple enzyme reaction system was the dTDP-glucose synthase reaction. Using the reaction scheme, about 1 gram of purified dTDP-4-keto-6-deoxy-D-glucose was obtained in an overall yield of 81% after two-step purification, i.e., anion exchange chromatography and gel filtration.  相似文献   

12.
Based on primary amino acid sequence comparisons with other phosphoglucomutases, 12 conserved residues in the Acetobacter xylinum phosphoglucomutase (CelB) were substituted by site-directed mutagenesis, resulting in mutant enzymes with Kcat values [glucose-1-phosphate (G-1-P) to glucose-6-phosphate] ranging from 0 to 46% relative to that of the wild-type enzyme. In combination with a versatile set of plasmid expression vectors these proteins were used in a metabolic engineering study on sugar catabolism in Escherichia coli. Mutants of E. coli deficient in phosphoglucomutase synthesize intracellular amylose when grown on galactose, due to accumulation of G-1-P. Wild-type celB can complement this lesion, and we show here that the ability of the mutant enzymes to complement is sensitive to variations in their respective in vitro determined Kcat and Km G-1-P values. Reduced catalytic efficiencies could be compensated by increasing the CelB expression level, and in this way a mutant protein (substitution of Thr-45 to Ala) displaying a 7600-fold reduced catalytic efficiency could be used to eliminate the amylose accumulation. Complementation experiments with the homologous phosphoglucomutase indicated that a Km G-1-P value significantly below that of CelB is not critical for the in vivo conversion of the substrate.  相似文献   

13.
An in vitro glycolysis system has been developed to study the regulation of glycolysis on kinetic structure basis, in order to determine the extent of regulatory effects on the whole system of individual enzymes according to their kinetic data, in rat liver and muscle. Hexokinase or glucose-6-phosphate addition to the system with glucose as substrate increases lactate production rate by 2.5 in liver and by 10 in muscle, which suggest glucose phosphorylation step is a limiting step in this system. Fructose 2,6-bisphosphate addition to the system increases lactate production rate in liver only when glucose is the substrate, but not with glucose-6-phosphate as substrate. There is a linear relationship between glycolytic activity, as lactate produced per min and protein quantity, which suggests that this system can also be used to assay glycolytic activity in tissue extracts. Specific glycolytic activity found, as mumol of L-lactate produced per min, per protein mg was 0.1 for muscle and 0.01 for liver.  相似文献   

14.
The α-glucan phosphorylases of the glycosyltransferase family are important enzymes of carbohydrate metabolism in prokaryotes and eukaryotes. The plant α-glucan phosphorylase, commonly called starch phosphorylase (EC 2.4.1.1), is largely known for the phosphorolytic degradation of starch. Starch phosphorylase catalyzes the reversible transfer of glucosyl units from glucose-1-phosphate to the nonreducing end of α-1,4-d-glucan chains with the release of phosphate. Two distinct forms of starch phosphorylase, plastidic phosphorylase and cytosolic phosphorylase, have been consistently observed in higher plants. Starch phosphorylase is industrially useful and a preferred enzyme among all glucan phosphorylases for phosphorolytic reactions for the production of glucose-1-phosphate and for the development of engineered varieties of glucans and starch. Despite several investigations, the precise functional mechanisms of its characteristic multiple forms and the structural details are still eluding us. Recent discoveries have shed some light on their physiological substrates, precise biological functions, and regulatory aspects. In this review, we have highlighted important developments in understanding the role of starch phosphorylases and their emerging applications in industry.  相似文献   

15.
Two well-established methods to prepare glycogen are available: (1) extraction from natural resources such as shellfish and animal tissues; (2) synthesis from glucose-1-phosphate using two enzymes, α-glucan phosphorylase (EC 2.4.1.1) and branching enzyme (EC 2.4.1.18). We have developed a novel enzymatic process for glycogen production, in which short-chain amylose is first prepared from starch or dextrin by using isoamylase (EC 3.2.1.68), and then branching enzyme and amylomaltase (EC 2.4.1.25) are added to synthesize glycogen. Our enzymatic process, using isoamylase, branching enzyme and amylomaltase, is currently the most efficient for glycogen production. Furthermore, the molecular weight of glycogen is controllable in a range of 3.0×106 to 3.0×107 by adjusting some parameters of the reaction.  相似文献   

16.
The presence of an active transport system for glucose-1-phosphate in Agrobacterium tumefaciens was demonstrated from the following observations. (i) The bacterium could grow on a medium containing glucose-1-phosphate as carbon source; (ii) the entry of glucose-1-phosphate into the resting cells occurred against concentration gradient obeying Michaelis-Menten kinetics; and (iii) the entry reaction was energy-dependent. The transport system for glucose-1-phosphate was formed inducibly by growing the organism on a glucose-1-phosphate or sucrose medium. From the inhibition and kinetics studies it was found that the transport system had a high specificity for glucose-1-phosphate with a high affinity, K(m) value of 4.5 x 10(-6)m at pH 8.2. The existence of glucose-1-phosphate binding factor was proved in the shock fluid which was prepared from the cells grown on both glucose-1-phosphate and sucrose media by osmotic shock.  相似文献   

17.
Allosteric enzymes have very complex kinetic behaviours which are primarily interpreted through simplified models. To describe the functional properties of liver and muscle glycogen phosphorylase isozymes we have developed an experimental strategy based on the measurements of initial reaction rates in the presence of different concentrations of the effectors glucose-1-phosphate and methyl-xanthines. Using the extensive structural information available for the two glycogen phosphorylase conformers T (inactive) and R (active) with different ligands, we have applied the Monod-Wyman-Changeux model and analysed the results in the context of the exclusive binding of the inhibitors to the T state, meanwhile the substrate glucose-1-phosphate binds to both, the R and T states. The kinetic analysis shows a good agreement between our model and the results obtained from the glycogen phosphorylases and inhibitors included in this study, which demonstrates the validity of the approach described here.  相似文献   

18.
There is a substantial increase in the activities of phosphorylase, hexokinase, glucose-6-phosphate dehydrogenase and alcohol dehydrogenase in white yam tubers as they age. The high glucose-6-phosphate dehydrogenase activities suggest that the pentose phosphate pathway is important in yam tuber tissue.  相似文献   

19.
L de Meis  M A Grieco  A Galina 《FEBS letters》1992,308(2):197-201
During steady-state, the Pi released in the medium is derived from glucose-6-phosphate which continuously regenerates the ATP hydrolyzed. A membrane potential (delta psi) can be built up in submitochondrial particles using glucose-6-phosphate and hexokinase as an ATP-regenerating system. The energy derived from the membrane potential thus formed, can be used to promote the energy-dependent transhydrogenation from NADH to NADP+ and the uphill electron transfer from succinate to NAD+. In spite of the large differences in the energies of hydrolysis of ATP (delta G degrees = -7.0 to -9.0 kcal/mol) and of glucose-6-phosphate (delta G degrees = -2.5 kcal/mol), the same ratio between Pi production and either NADPH or NADH formation were measured regardless of whether millimolar concentrations of ATP or a mixture of ADP, glucose-6-phosphate and hexokinase were used. Rat liver mitochondria were able to accumulate Ca2+ when incubated in a medium containing hexokinase, ADP and glucose-6-phosphate. The different reaction measured with the use of glucose-6-phosphate and hexokinase were inhibited by glucose concentrations varying from 0.2 to 2 mM. Glucose shifts the equilibrium of the reaction towards glucose-6-phosphate formation thus leading to a decrease of the ATP concentration in the medium.  相似文献   

20.
This work shows that the enzyme membrane reactor offers the opportunity to carry out the enzymatic regeneration of ATP providing continuous operation with high performance. In this system, the coenzyme is immobilized on a water-soluble polymer. These high-molecular weight derivates are entrapped within an ultrafiltration membrane together with the enzymes for production of regeneration. Several polymer derivatives of ATP have been prepared for this immobilization technique. Coenzymatic activity of these derivatives was studied with several enzymes for both ATP-requiring and ATP-regenerating reactions. PEG-N6-aminohexyl-ATP was selected as the appropriate coenzyme for operating the enzyme membrane reactor. Acetate kinase was the only enzyme providing enough activity for regeneration. Production of glucose-6-phosphate is cited as the first example. The kinetics of acetate kinase and hexokinase were examined and used to choose the operating conditions of the process. The process operated continuously for more than 1 month. With a mean conversion of 80%, the space-time yield amounted to 348 g glucose-6-phosphate/L d. The cycle number of ATP was estimated as 20, 000 mol/mol. With the continuous production of gamma-glutamylcysteine and NADP, the feasibility of the system was proven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号