首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Intraocular injection of colchicine in doses which do not affect the protein synthesis in the retina has profound effects on the axonal transport of protein in the retinal ganglion cells of the rabbit. Rapid axonal transport in these cells is completely inhibited after treatment with relatively low amounts of colchicine. In contrast to this, a certain fraction of the slow axonal transport is resistant to colchicine treatment. Colchicine in doses which completely inhibits fast axonal transport caused discrete morphological changes in the perikaryon and in the axon of the retinal ganglion cell. No disappearance of microtubules and no general proliferation of neurofilaments was observed in the perikaryon of the retinal ganglion cells. There was a slight or moderate increase in the number of filaments in the intra-retinal part of the axons of the retinal ganglion cells.This work has been supported by grants from the Swedish Medical Research Council (B71-12X-2543-03, B71-13X-2226-05A) and the Swedish National Cancer Society (265-B70-02X).  相似文献   

2.
Axonal transport of tubulin in the rat sciatic nerve is almost completely inhibited by a single subepineural injection of taxol, without affecting that of neurofilament proteins. Actin and a large number of polypeptides cotransported with actin as minor components are also blocked by taxol, although to a lesser extent. Fast axonal transport is essentially free from the inhibitory effect of this drug. Although previous models have suggested that slow axonal transport involves the bulk movement of cytoskeletal structures, these results suggest that such transport may involve an equilibrium between polymerised and depolymerised forms of the axonal cytoskeleton.  相似文献   

3.
The composition of the fast and slow components of axonal transport in the goldfish optic nerve was investigated, using specific radioactive precursors injected into the eye. Tritiated glucosamine and fucose label macromolecules, presumably glycoproteins, which are rapidly transported from the eye to the optic tectum. Material labeled with these precursors is not evident in the slowly transported component. Glucosamine and fucose incorporation are blocked when a protein synthesis inhibitor, acetoxycycloheximide, is injected into the eye concurrently with the precursors. As well as labeling macromolecules, 3H-glucosamine and 3H-N-acetylmannosamine ( a precursor of sialic acids) also label rapidly-transported chloroform-methanol-extractable material which may contain transported glycolipids. Two procedures were used to show that the slow component of axonal transport contains tubulin, a protein characteristic of the microtubules:
  • (a) Tracer doses of tritiated colchicine injected into the eye label a wave of radioactivity which moves 0.5 mm/day, the rate of slow axonal transport in the goldfish optic nerve. We believe this wave represents the movement of colchicine which is bound to colchicine-binding protein moving in the slow component of axonal transport.
  • (b) Tritiated proline labels a slowly transported protein which is precipitated by vinblastine and has a mobility on polyacrylamide gels comparable to authentic tubulin. These results indicate that the fast and slow components of axonal transport each provide specific chemical substances to the nerve endings.
  相似文献   

4.
We have developed a model that accounts for the effect of a non-uniform distribution of tau protein along the axon length on fast axonal transport of intracellular organelles. The tau distribution is simulated by using a slow axonal transport model; the numerically predicted tau distributions along the axon length were validated by comparing them with experimentally measured tau distributions reported in the literature. We then developed a fast axonal transport model for organelles that accounts for the reduction of kinesin attachment rate to microtubules by tau. We investigated organelle transport for two situations: (1) a uniform tau distribution and (2) a non-uniform tau distribution predicted by the slow axonal transport model. We found that non-uniform tau distributions observed in healthy axons (an increase in tau concentration towards the axon tip) result in a significant enhancement of organelle transport towards the synapse compared with the uniform tau distribution with the same average amount of tau. This suggests that tau may play the role of being an enhancer of organelle transport.  相似文献   

5.
The bulk of neuronally synthesized proteins destined for the axon is transported in a phase of transport approximately 100 times slower (1mm/day) than the vesicular traffic of fast axonal transport (100mm/day). Of late, a number of studies have shed considerable light on the controversies and mechanisms surrounding this slow phase of axonal transport. Along-standing controversy has centered on the form of the transported proteins. One major transport cargo, neurofilament protein, has now been seen in a number of contexts to be transported primarily in a polymeric form, whereas a second cargo tubulin is transported as a small oligomer. The development of techniques to visualize the slow transport process in live cells has demonstrated that instantaneous motions of transported neurofilaments, and presumably other slow transport cargoes, are fast, bidirectional and interspersed with long pauses. This and additional biochemical efforts indicate that traditional fast motors, such as conventional kinesin and dynein, are responsible for these fast motions.  相似文献   

6.
Effects of single and repeated doses of acrylamide on fast and slow axonal transport of radio labeled proteins following the injection of L-[4,5-3H] leucine have been studied in the optic system of male Sprague-Dawley rats. A single dose of acrylamide (100 mg/kg) had no effect, but higher concentrations (200–300 mg/kg) altered the distribution of fast axonally transported materials in optic nerves and optic tracts. Repeated doses of acrylamide (30 mg/kg/day, 5 days per week for 4 weeks) produced degeneration of tibial nerves but spared optic nerves and optic tracts. Fast axonal transport rate in optic axons was reduced by 50% (reduced to 4 mm/h from 8 mm/h) in acrylamide treated animals. Acrylamide also slowed the velocity of slow axonal transport of labeled proteins in optic axons to 1.0 mm per day from 1.3 mm per day. Since acrylamide impaired the rate of both fast and slow axonal transport in the absence of overt morphological damage, it can be concluded that deficit in axonal transport is an important factor in the pathogenesis of axonal degeneration in acrylamide neuropathy.  相似文献   

7.
Recent work suggests that mammalian retinal ganglion cells may become more like developing ganglion cells in form while regenerating through a peripheral nerve graft. We have injected Lucifer Yellow into regenerating ganglion cells of goldfish to look for similar changes. Within three weeks of injury, we saw dye-coupling to nearby cells, which is a common developmental feature in many species. Dendrites and axons, which in most mature ganglion cells are smooth, became varicose and hairy, like those examined in mammalian development. Secondary axons arose later, not only as side-branches of the primary axon but also from the soma, as in mammalian development and regeneration. Since, in fish, these responses are clearly an intrinsic part of functional regeneration, their equivalence in fish and mammals strengthens the view that a similar regenerative competence may exist in the retinal ganglion cells of all vertebrates.  相似文献   

8.
The effects of trifluoperazine (TFP) on fast and slow axonal transport (AXT) of labeled proteins were examined in the rabbit vagus nerve. Cuffs soaked in a 10 mM, but not 0.1 mM or 1 mM, concentration of TFP applied locally around the vagus nerve in vivo blocked both fast and slow AXT, as measured by the accumulation of 3H-labeled proteins. In vitro, fast AXT was affected by 0.1 mM TFP. The TFP cuff treatment caused a reduction in the number of axonal microtubules (MT) whereas cuffs soaked in saline had no effect. The levels of ATP, ADP, and AMP were not significantly lowered by the TFP treatment. The results suggest that both fast and slow AXT are sensitive to TFP treatment, and that the axonal MT-system may be the main target of the drug.  相似文献   

9.
10.
Organelles in fast axonal transport   总被引:3,自引:0,他引:3  
The present minireview describes experiments carried out, in short-term crush-operated rat nerves, using immunofluorescence and cytofluorimetric scanning techniques to study endogenous substances in anterograde and retrograde fast axonal transport. Vesicle membrane components p38 (synaptophysin) and SV2 are accumulating on both sides of a crush, but a larger proportion of p38 (about 3/4) than of SV2 (about 1/2) is recycling toward the cell body, compared to the amount carried with anterograde transport. Matrix peptides, such as CGRP, ChRA, VIP, and DBH are recycling to a minor degree, although only 10-20% of surface-associated molecules, such as synapsins and kinesin, appear to recycle. The described methodological approach to study the composition of organelles in fast axonal transport, anterograde as compared to retrograde, is shown to be useful for investigating neurobiological processes. We make use of the "in vivo chromatography" process that the fast axonal transport system constitutes. Only substances that are in some way either stored in, or associated with, transported organelles can be clearly observed to accumulate relative to the crush region. Emphasis in this paper was given to the synapsins, because of diverging results published concerning the degree of affiliation with various neuronal organelles. Our previously published results have indicated that in the living axons the SYN I is affiliated with mainly anterogradely fast transported organelles. Therefore, some preliminary, previously unpublished results on the accumulations of the four different synapsins (SYN Ia, SYN Ib, SYN IIa, and SYN IIb), using antisera specific for each of the four members of the synapsin family, are described. It was found that SYN Ib clearly has a stronger affiliation to anterogradely transported organelles than SYN Ia, and that both SYN IIa and SYN IIb are bound to some degree to transported organelles.  相似文献   

11.
12.
Axonal transport of actin in rabbit retinal ganglion cells   总被引:9,自引:1,他引:8       下载免费PDF全文
We labeled proteins in the cell bodies of rabbit retinal ganglion cells with [35S]methionine and subsequently observed the appearance of radioactive actin in tissues containing the axons and synaptic terminals of these neurons, i.e., the optic nerve (ON), optic tract (OT), lateral geniculate nucleus (LGN) and the superior colliculus (SC). The temporal sequence of appearance of labeled actin (which was identified by its specific binding to DNase I, its electrophoretic mobility, and its peptide map) in these tissues indicated that actin is an axonally transported protein with a maximum transport velocity of 3.4--4.3 mm/d. The kinetics of labeling actin were similar to the kinetics of labeling two proteins (M1 and M2) which resemble myosin; these myosin-like proteins were previously found to be included in the groups of proteins (groups III and IV) transported with the third and fourth most rapid maximum velocities. The similarity in transport between actin and myosin-like proteins supports the idea that a number of proteins in the third and fourth transport groups may be functionally related by virtue of their involvement in a force-generating mechanism and suggests the possibility that these proteins may be axonally transported as a preformed force-generating unit.  相似文献   

13.
Like other neurons of the central nervous system (CNS), retinal ganglion cells (RGCs) are normally unable to regenerate injured axons and instead undergo apoptotic cell death. This regenerative failure leads to lifelong visual deficits after optic nerve damage and is partially attributable to factors located in the inhibitory environment of the forming glial scar and myelin as well as to an insufficient intrinsic ability for axonal regrowth. In addition to its ophthalmological relevance, the optic nerve has long been used as a favorable paradigm for studying regenerative failure in the CNS as a whole. Findings over the last 15 years have shown that, under certain circumstances, mature RGCs can be transformed into an active regenerative state enabling these neurons to survive axotomy and to regenerate axons in the optic nerve. Moreover, combinatorial treatments overcoming the inhibitory environment of the glial scar and optic nerve myelin, together with approaches activating the intrinsic growth program, can further enhance the amount of regeneration in vivo. These findings are encouraging and open the possibility that clinically meaningful regenerationmay become achievable in the future.  相似文献   

14.
Manookin MB  Demb JB 《Neuron》2006,50(3):453-464
Visual neurons, from retina to cortex, adapt slowly to stimulus contrast. Following a switch from high to low contrast, a neuron rapidly decreases its responsiveness and recovers over 5-20 s. Cortical adaptation arises from an intrinsic cellular mechanism: a sodium-dependent potassium conductance that causes prolonged hyperpolarization. Spiking can drive this mechanism, raising the possibility that the same mechanism exists in retinal ganglion cells. We found that adaptation in ganglion cells corresponds to a slowly recovering afterhyperpolarization (AHP), but, unlike in cortical cells, this AHP is not primarily driven by an intrinsic cellular property: spiking was not sufficient to generate adaptation. Adaptation was strongest following spatial stimuli tuned to presynaptic bipolar cells rather than the ganglion cell; it was driven by a reduced excitatory conductance, and it persisted while blocking GABA and glycine receptors, K((Ca)) channels, or mGluRs. Thus, slow adaptation arises from reduced glutamate release from presynaptic (nonspiking) bipolar cells.  相似文献   

15.
《Neuron》2022,110(16):2625-2645.e7
  1. Download : Download high-res image (290KB)
  2. Download : Download full-size image
  相似文献   

16.
Cytoplasmic protein transport in axons (‘slow axonal transport’) is essential for neuronal homeostasis, and involves Kinesin‐1, the same motor for membranous organelle transport (‘fast axonal transport’). However, both molecular mechanisms of slow axonal transport and difference in usage of Kinesin‐1 between slow and fast axonal transport have been elusive. Here, we show that slow axonal transport depends on the interaction between the DnaJ‐like domain of the kinesin light chain in the Kinesin‐1 motor complex and Hsc70, scaffolding between cytoplasmic proteins and Kinesin‐1. The domain is within the tetratricopeptide repeat, which can bind to membranous organelles, and competitive perturbation of the domain in squid giant axons disrupted cytoplasmic protein transport and reinforced membranous organelle transport, indicating that this domain might have a function as a switchover system between slow and fast transport by Hsc70. Transgenic mice overexpressing a dominant‐negative form of the domain showed delayed slow transport, accelerated fast transport and optic axonopathy. These findings provide a basis for the regulatory mechanism of intracellular transport and its intriguing implication in neuronal dysfunction.  相似文献   

17.
The carbocyanine dye, DiI, has been used to study the retinal origin of the uncrossed retinofugal component of the mouse and to show the course taken by these fibres through the optic nerve and chiasm during development. Optic axons first arrive at the chiasm at embryonic day 13 (E13) but do not cross the midline until E14. After this stage, fibres taking an uncrossed course can be selectively labelled by unilateral tract implants of DiI. The earliest ipsilaterally projecting ganglion cells are located in the dorsal central retina. The first sign of the adult pattern of distribution of ganglion cells with uncrossed axons located mainly in the ventrotemporal retina is seen on embryonic day 16.5, thus showing that the adult line of decussation forms early in development. A small number of labelled cells continue to be found in nasal and dorsal retina at all later stages. At early stages (E14-15), retrogradely labelled uncrossed fibres are found in virtually all fascicles of the developing nerve, intermingling with crossed axons throughout the length of the nerve. At later stages of development (E16-17), although uncrossed fibres pass predominantly within the temporal part of the stalk, they remain intermingled with crossed axons. A significant number of uncrossed axons also lie within the nasal part of the optic stalk. The position of uncrossed fibres throughout the nerve in the later developmental stages is comparable to that seen in the adult rodent (Baker and Jeffery, 1989). The distribution of uncrossed axons thus indicates that positional cues are not sufficient to account for the choice made by axons when they reach the optic chiasm.  相似文献   

18.
Axonal stretching is linked to rapid rates of axonal elongation. Yet the impact of stretching on elongation and slow axonal transport is unclear. Here, we develop a mathematical model of slow axonal transport that incorporates the rate of axonal elongation, protein half-life, protein density, adhesion strength, and axonal viscosity to quantify the effects of axonal stretching. We find that under conditions where the axon (or nerve) is free of a substrate and lengthens at rapid rates (>4 mm day−1), stretching can account for almost 50% of total anterograde axonal transport. These results suggest that it is possible to accelerate elongation and transport simultaneously by increasing either the axon's susceptibility to stretching or the forces that induce stretching. To our knowledge, this work is the first to incorporate the effects of stretching in a model of slow axonal transport. It has relevance to our understanding of neurite outgrowth during development and peripheral nerve regeneration after trauma, and hence to the development of treatments for spinal cord injury.  相似文献   

19.
I Nadelhaft 《Biophysical journal》1976,16(10):1125-1130
A phenomenological model of the process of fast axoplasmic transport is presented. The process was conceived of as occurring in two parts: (a) synthesis and storage of material in a cytoplasmic pool; (b) release from the pool and transport distally along the axon. Considering the fate of labeled proteins, the activity at points along the axon relfects events occurring earlier within the pool through the relationship: g(x,t) = const f(t - x/v); where g(x,t) represents axonal activity, f(t) the pool's activity, and v is the transport speed. Using the idea that when there is no further input of radioactivity into the pool its activity declines exponentially due to export of material to the axon. I generalized this concept to the case where activity enters and leaves the pool simultaneously. The model contains two parameters: the relative turnover rate of the pool, alpha, and T, an interval characteristic of the time of synthesis. From this model, the experimental data is unfolded and yields values for these parameters of alpha = 0.004 min-1 and T approximately 60 min.  相似文献   

20.
In neurons and other animal cells, membrane-bound vesicles course rapidly along cytoskeletal filaments to reach their destinations. Based on a variety of in vivo studies it is becoming clear that the microtubule-based motor, kinesin (and its relatives), drive vesicle movements in axons. Surprisingly, some axonal membranes have the capacity to move on both microtubules and actin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号