首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of different solvents and three different acyl acceptors on the transesterification of triolein (as a model compound) was investigated. The yield of biodiesel (methyl or ethyl ester) was monitored as a function of time. The yield of the product was also determined in a solvent-free system for two different modes of stirring. The results indicate that the highest yield is obtained in a solvent-free system with mechanical stirring. Methyl acetate is also effective as a solvent and acyl acceptor. Biodiesel was also produced by transesterification of triglycerides (triolein) present in olive oil with methanol and Novozym® 435. The effect of the molar ratio of methanol to triolein, mode of methanol addition, enzyme activity and reaction temperature on overall conversion and yield was determined. The final conversion and yield of biodiesel after a reaction time of 24 h were unaffected by changes in these parameters over the range studied. Preliminary findings indicate that the results obtained from small scale reactors and fresh oil can be extended to larger reactors and used oil.  相似文献   

2.
Enzymatic synthesis of sn-1,3-diacylglycerols (sn-1,3-DAG) in two steps without isolation of the intermediates was investigated. Firstly ethanolysis of extra virgin olive oil (EVO) using immobilized non-regiospecific lipase from Candida antarctica (Novozym 435) was carried out to obtain glycerol (Gly) and fatty acid ethyl esters (FAEE). In the second step the ethanolysis products have been re-esterificated testing different sn-1,3-regiospecific lipases, both immobilized and non-immobilized, in different reaction media, that is in the presence of solvents or in a solvent-free system, for different times, at different temperatures (12, 25 and 40 °C). The lipase from Rhizomucor miehei (Lipozyme IM) has been the most effective among the sn-1,3-specific lipases screened.  相似文献   

3.
Biodiesel (BD) is commonly produced from refined vegetable oils by alkali-catalyzed methanolysis. Unrefined vegetable oils are economically attractive but not suitable for alkali catalysis because of their high content of free fatty acids (FFAs). Novozym 435 (immobilized Candida antarctica lipase B), which accepts both FFA and oil as substrates, was, therefore, employed to convert unrefined palm oil to BD. Three different methanolysis methods, namely, t-butanol mediated system (method-1), LiCl solution based controlled release system for methanol (method-2) and solvent-free system with three successive additions of methanol (method-3), were compared. The optimal methanol to oil molar ratios in the method-1, -2 and -3 are 6:1, 3:1 and 3:1, respectively. BD yield at an optimal methanol concentration reaches 91–92% after 10, 20 and 24 h in the method-1, -2 and -3, respectively. BD yield remains the same over five repeated cycles in the method-1, while it drops to 68 and 71% by the fifth cycle in the method-2 and -3, respectively. The results show that the method-1 is the most effective for production of BD from a low cost feedstock like unrefined palm oil.  相似文献   

4.
1,3-Diferuloyl-sn-glycerol is found ubiquitously throughout the plant kingdom, possessing ultraviolet adsorbing and antioxidant properties. Diferuloyl glycerol was synthesized and isolated as a byproduct in up to 5% yield from a pilot plant scale packed-bed, biocatalytic transesterification of ethyl ferulate with soybean oil or mono- and diacylglycerols from soybean oil. The yield of the diferuloyl glycerol byproduct was directly proportional to the overall water concentration of the bioreactor. The isolated diferuloyl glycerol exhibited good ultraviolet adsorbing properties, 280–360 nm with a λmax 322 nm, and compared well to the efficacy of commercial sunscreen active ingredients. The antioxidant capacity of diferuloyl glycerol (0.25–2.5 mM) was determined by its ability to scavenge 2,2-diphenyl-1-picrylhydrazyl radicals and was comparable to that of ferulic acid. At current pilot plant scale production capacity, 120 kg diferuloyl glycerol byproduct could be isolated per year. Product names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may be suitable.  相似文献   

5.
This review sought to describe the role played by some components of the microbiota of extra virgin olive oil (EVOO), particularly yeasts, in structuring the physicochemical and sensorial quality of freshly produced olive oil. Yeasts can survive during the entire storage period of the product. To date, approximately 25 yeast species isolated from oil produced in more than six countries have been identified, eight of which are classified as new species. Some yeast species improve the health qualities of oil, whereas many others improve the chemical composition and sensory characteristics based on β-glucosidase and esterase enzymes, which are involved in the hydrolysis of the bitter glucoside known as oleuropein. However, some species, which are typically favoured by the high water content in the oily matrix, such as lipase-producing yeasts, can worsen the initial chemical characteristics of EVOO oil during storage. Some physical treatments that are compatible with the EVOO production specification affect the biotic component of the oil by reducing the concentration of yeasts. The possibility of minimizing the invasive action on the biotic component of the oil by appropriately selecting the physical treatment for each oil is discussed.  相似文献   

6.
The hydrolysis of olive oil catalyzed by Candida rugosa lipase in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane and the synthetic sodium bis(2-ethylhexyl polyoxyethylene)sulfosuccinate (MAOT)/isooctane reverse micellar systems was investigated in a polysulfone hollow fiber membrane reactor with recycle of the reaction mixture. Lipase was completely retained by the membrane while olive oil and oleic acid freely passed through. The retention of reverse micelles depended on W 0 (molar ratio of water to surfactant). At an olive oil concentration of 0.23 mol l–1 the final substrate conversion in the MAOT micellar system was about 1.4 times of that in the AOT micellar system.  相似文献   

7.
In this study, we report the enzymatic production of glycerol acetate from glycerol and methyl acetate. Lipases are essential for the catalysis of this reaction. To find the optimum conditions for glycerol acetate production, sequential experiments were designed. Type of lipase, lipase concentration, molar ratio of reactants, reaction temperature and solvents were investigated for the optimum conversion of glycerol to glycerol acetate. As the result of lipase screening, Novozym 435 (Immobilized Candida antarctica lipase B) was turned out to be the optimal lipase for the reaction. Under the optimal conditions (2.5 g/L of Novozym 435, 1:40 molar ratio of glycerol to methyl acetate, 40 °C and tert-butanol as the solvent), glycerol acetate production was achieved in 95.00% conversion.  相似文献   

8.
Lipases have bio-imprinted with common substrate-interfaces and interesterification activities compared with amphiphile bio-imprinted counterparts. Bio-imprinting has yielded a 3.5- to 4.5-fold activity enhancement. Solvent-free medium was equally effective as hexane medium. Water addition erased the bio-imprinting effect. Bio-imprinting caused rate acceleration in the interesterification reaction and increased thermostability of the enzyme.  相似文献   

9.
Olive oil is the most important product of olive fruits with worldwide consumption, particularly in Mediterranean countries. Olive oil is generally extracted mechanically from the olive fruits. Some biotic and abiotic factors may affect the quality of oil extracted from olive fruit. Contamination with fungi during growth period in the garden or during the conservation of the harvested crop under storage condition may leave negative effects on the quality of olive oil. However, there is no data available on the effects of fungal infections on qualitative properties of olive oil in Iran. In the present study effects of several fungal groups previously isolated from rotten olive fruit in olive orchards including Alternaria alternata, Fusarium nygamai, Aspergillus ochraceus, Arthrinium phaeospermum, Cladosporium cladosporioides, Aureobasidium pullulans, Epicoccum nigrum, Penicillium expansum, Truncatella angustata, Trichothecium roseum and Trichoderma harzianum were evaluated on some qualitative properties of olive oil, under laboratory condition on two olive cultivars (Zard & Roghani). For this purpose fresh and healthy fruits of olive, were surface sterilisation with 96% ethanol and rinsed with sterile water and then inoculated with each of the fungal groups separately using spore suspension (106?ml?1). The experiment was carried out in two replicates for each treatment (fungal isolates). The results of this study revealed that fungal infection caused significant increase in the extracted oil acidity and peroxide values. However, there was no significant difference in the acidity and peroxide values among different treatments (fungal isolates).  相似文献   

10.

Background  

Transesterification of Jatropha oil was carried out in t-butanol solvent using immobilized lipase from Enterobacter aerogenes. The presence of t-butanol significantly reduced the negative effects caused by both methanol and glycerol. The effects of various reaction parameters on transesterification of Jatropha oil were studied.  相似文献   

11.
The aim of this work is to study the transesterification of vegetable oil with a high acid number at unchanged reaction conditions. Rapeseed oil was used as the raw material and its acid number was changed by the addition of oleic acid (from 0.89 to 12.25 mg KOH/g). Methanol was used for transesterification (molar ratio of oil to methanol 1:6) and potassium hydroxide was used as a catalyst. After the reaction time, the residue of the catalyst was neutralised by gaseous carbon dioxide and the methanol excess was removed. After the separation of two phases, each of them was analyzed (in the ester phase: yield, content of methyl ester and acid number; in the glycerol phase: yield, density, viscosity, content of glycerol, soaps, methyl ester, potassium carbonate and hydrogen carbonate). The obtained data was compared with theoretical material balances and the effect on the saponification of oil was discussed. The results show that the yield of methyl ester (biodiesel) is significantly affected by a higher acid number, as well as enhanced soap formation. On the other hand, the conversion of the oil and acid number of the ester phase remain at constant values in studied borders.  相似文献   

12.
Using Novozym 435 as catalyst, the syntheses of ethyl ferulate (EF) from ferulic acid (4-hydroxy 3-methoxy cinnamic acid) and ethanol, and octyl methoxycinnamate (OMC) from p-methoxycinnamic acid and 2-ethyl hexanol were successfully carried out in this study. A conversion of 87% was obtained within 2 days at 75 °C for the synthesis of EF. For the synthesis of OMC at 80 °C, 90% conversion can be obtained within 1 day. The use of solvent and high reaction temperature resulted in better conversion for the synthesis of cinnamic acid derivatives. Some cinnamic acid esters could also be obtained with higher conversion and shorter reaction times in comparison to other methods reported in the literature. The enzyme can be reused several times before significant activity loss was observed. Revisions requested 10 January 2006; Revisions received 17 January 2006  相似文献   

13.
A new lignan 1-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-(3-acetyl-4-hydroxy-5-methoxyphenyl)-3,7-dioxabicyclo[3.3.0]octane, the secoiridoid 2H-pyran-4-acetic acid,3-hydroxymethyl-2,3-dihydro-5-(methoxycarbonyl)-2-methyl-, methyl ester, the phenylglycoside 4-[beta-D-xylopyranosyl-(1-->6)]-beta-D-glucopyranosyl-1,4-dihydroxy-2-methoxybenzene and the lactone 3-[1-(hydroxymethyl)-1-propenyl] delta-glutarolactone were isolated and identified on the basis of spectroscopic data including two-dimensional NMR, as components of olive oil mill waste-waters. The known aromatic compounds catechol, 4-hydroxybenzoic acid, protocatechuic acid, vanillic acid, 4-hydroxy-3,5-dimethoxybenzoic acid, 4-hydroxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid, tyrosol, hydroxytyrosol, 2-(4-hydroxy-3-methoxy)phenylethanol, 2-(3,4-dihydroxy)phenyl-1,2-ethandiol, p-coumaric acid, caffeic acid, ferulic acid, sinapic acid, 1-O-[2-(3,4-dihydroxy)phenylethyl]-(3,4-dihydroxy)phenyl-1,2-ethandiol, 1-O-[2-(4-hydroxy)phenylethyl]-(3,4-dihydroxy)phenyl-1,2-ethandiol, D(+)-erythro-1-(4-hydroxy-3-methoxy)-phenyl-1,2,3-propantriol, p-hydroxyphenethyl-beta-D-glucopyranoside,2(3,4-dihydroxyphenyl)ethanol 3beta-D-glucopyranoside, and 2(3,4-dihydroxyphenyl)ethanol 4beta-D-glucopyranoside were also confirmed as constituents of the waste-waters.  相似文献   

14.
Background: A recent study conducted by Medina et al. disclosed that virgin olive oil has a bactericidal effect in vitro against Helicobacter pylori because of its contents of certain phenolic compounds with dialdehydic structures. We carried out two clinical trials to evaluate the effect of virgin olive oil on H. pylori‐infected individuals. Materials and Methods: Two different pilot studies were performed with 60 H. pylori‐infected adults. In the first study, thirty subjects who tested positive for H. pylori received 30 g of washed virgin olive oil for 14 days, and after 1 month, the patients took 30 g of unwashed virgin olive oil for another 14 days. In a second study, a group of 30 subjects received 30 g of a different virgin olive oil for 14 days. Helicobacter pylori‐infection status was checked by the urea breath test. Results: Helicobacter pylori was eradicated in 8 of 30 individuals when microorganism status was checked after 4–6 weeks from the first clinical intervention although 12 of 30 individuals did not show H. pylori infection at 24–72 hour of the last oil dose. Eradication rates were 27 and 40% by intention to treat and per protocol, respectively. Moreover, only 3 of 30 individuals were H. pylori negative after 4–6 weeks from the second clinical intervention but 5 of 30 were negative at 24–72 hour of the last oil dose. Eradication rates were 10 and 11% by intention to treat and per protocol, respectively. It must also be noted that 13 subjects withdrew from the studies because of taste and nausea drawbacks. Conclusions: The administration of virgin olive oil showed moderate effectiveness in eradicating H. pylori. Further studies are needed to confirm these findings, especially with longer periods, different administration conditions, and several types of olive oils.  相似文献   

15.
Symmetrical dialkyl carbonates and dibenzyl carbonates reacted with various nucleophiles in the presence of Candida antarctica lipase B in organic solvents. For example, reaction of dibutyl and dibenzyl carbonate with an alcohol gave a mixture of the mono- and disubstituted products. Aminolysis, however, afforded only the carbamates, without subsequent reaction to the ureum derivatives. The reaction rates were rather low compared with carboxylic esters; the reactivity increased in the order dimethyl相似文献   

16.
Xie W  Yang D 《Bioresource technology》2011,102(20):9818-9822
The transesterification of soybean oil with methanol was carried out, to produce biodiesel, over silica-bonded N-propyl sulfamic acid in a heterogeneous manner. Results showed that a maximum conversion of 90.5% was achieved using a 1:20 M ratio of soybean oil to methanol and a catalyst amount of 7.5 wt.% at 423 K for 60 h. It was found that the free fatty acid (FFA) and water present in the feedstock had no significant influence on the catalytic activity to the transesterification reaction. Besides, the catalyst also showed activities towards the esterification reaction of FFAs, in terms of the FFA conversion of 95.6% at 423 K for 30 h. Furthermore, the catalyst could be recovered with a better reusability.  相似文献   

17.
Profens (2‐arylpropionic acids) are known as one of the major nonsteroidal antiinflammatory drugs (NSAIDs) used in the treatment of inflammation associated with tissue injury. The inflammatory activity of profens is mainly due to their (S)‐enantiomer, whereas they are commercially available not only as pure enantiomers, but as racemates as well. There are several methods widely used in order to obtain enantiomerically pure compounds, however, the kinetic resolution with the application of lipases as biocatalysts may have an added advantage in the production of optically pure active pharmaceutical ingredients, such as milder reaction conditions, reduced energy requirements, and production costs. The aim of this study was to compare the results described in the literature in the case of the influence of reaction medium, alcohol moiety, and reaction temperature on the catalytic activity of lipases from Candida antarctica and Candida rugosa. Chirality 26:663–669, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
The treatment of olive oil mill wastewater (OMW) with two phenol resistant algae, Ankistrodesmus braunii and Scenedesmus quadricauda, showed a limited reduction of phenol content after 5 d of treatment, irrespective of algal concentration. Otherwise, cultures of both algae, grown in the dark, degraded over 50% of the low molecular weight phenols contained in OMW, but they were not completely removed, but were biotransformed into other non-identified, aromatic compounds.  相似文献   

19.
In search for compounds, able to protect nuclear DNA in cells exposed to oxidative stress, extracts from olive leaves, olive fruits, olive oil and olive mill waste water were tested by using the “single cell gel electrophoresis” methodology (comet assay). Jurkat cells in culture were exposed to continuously generated hydrogen peroxide (11.8±1.5 μM per min) by direct addition into the growth medium of the appropriate amount of the enzyme “glucose oxidase” in the presence or absence of the tested total extracts. The protective effects of the tested extracts or isolated compounds were evaluated from their ability to decrease hydrogen peroxide-induced formation of single strand breaks in the nuclear DNA, while the toxic effects were estimated from the increase of DNA damage when the extracts or isolated compounds were incubated directly with the cells. Significant protection was observed in extracts from olive oil and olive mill waste water. However, above a concentration of 100 μg/ml olive oil extracts exerted DNA damaging effects by themselves in the absence of any H2O2. Extracts from olive leaves and olive fruits although protective, were also able to induce DNA damage by themselves. Main compounds isolated from the above described total extracts, like oleuropein glucoside, tyrosol, hydroxytyrosol and caffeic acid, were tested in the same experimental system and found to exert cytotoxic (oleuropein glucoside), no effect (tyrosol) or protective effects (hydroxytyrosol and caffeic acid). In conclusion, cytoprotective as well as cytotoxic compounds with potential pharmaceutical properties were detected in extracts from olive oil related sources by using the comet assay methodology.  相似文献   

20.
Some biological actions of olive oil phenolics (inhibition of platelet aggregation, decrease of LDL-oxidation, inhibition of bacterial growth and hypertensive action) have been attributed to NOS stimulation in endothelial cells through an increase of cytosolic calcium, notwithstanding the scavenging activity of phenolics on NO and superoxide. In this paper, we determine the concentration of cytosolic calcium in human lymphomonocytes incubated with high concentrations of NO-donors (CysNO) and we evaluate the effects of olive oil phenolics on this parameter. CysNO induces a marked decrease of cytosolic calcium; both olive oil phenolics oppose this action of CysNO. The effects of phenolics and CysNO are independent and additive. (Mol Cell Biochem xxx: 181–184, 2005)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号