首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Posttranslational modification of proteins with ubiquitin and ubiquitin-like proteins plays important regulatory roles in eukaryotes. Although a homologous conjugation system has recently been reported in Archaea, there is no similar report in Bacteria. This report describes the identification of a ubiquitin-like conjugation system in the bacterium Thermus thermophilus. A series of in vivo analyses revealed that TtuB, a bacterial ubiquitin-like protein that functions as a sulfur carrier in tRNA thiouridine synthesis, was covalently attached to target proteins, most likely via its C-terminal glycine. The involvement of the ubiquitin-activating enzyme-like protein TtuC in conjugate formation and the attachments of TtuB to TtuC and TtuA, which are proteins required for tRNA thiouridine synthesis, were demonstrated. Mass spectrometry analysis revealed that lysine residues (Lys-137/Lys-226/Lys-229) of TtuA were covalently modified by the C-terminal carboxylate of TtuB. Intriguingly, a deletion mutant of a JAMM (JAB1/MPN/Mov34 metalloenzyme) ubiquitin isopeptidase homolog showed aberrant TtuB conjugates of TtuC and TtuA and an ~50% decrease in thiouridine amounts in tRNA. These results would support the hypothesis that thiouridine synthesis is regulated by TtuB-conjugation.  相似文献   

4.
Posttranslational modification of MDM2   总被引:1,自引:0,他引:1  
The functions of the MDM2 protein, in particular its E3 ubiquitin ligase activity and its ability to interact with a number of cellular proteins intimately involved in growth regulation, are modulated by sumoylation and multisite phosphorylation. These posttranslational mechanisms not only regulate the intrinsic activity of MDM2 in response to cellular stresses, but also govern its subcellular localization, differentiate between MDM2-mediated ubiquitination of p53 and autoubiquitination, integrate the stress response with mechanisms that mediate cell survival, and modulate the interaction of MDM2 with cellular and viral proteins. In this review, we summarize our current knowledge of the role of posttranslational modifications of MDM2 and their functional relevance.  相似文献   

5.
Posttranslational modification and microtubule stability   总被引:4,自引:12,他引:4       下载免费PDF全文
We have probed the relationship between tubulin posttranslational modification and microtubule stability, using a variation of the antibody-blocking technique. In human retinoblastoma cells we find that acetylated and detyrosinated microtubules represent congruent subsets of the cells' total microtubules. We also find that stable microtubules defined as those that had not undergone polymerization within 1 h after injection of biotin-tubulin were all posttranslationally modified; furthermore dynamic microtubules were all unmodified. We therefore conclude that in these cells the stable, acetylated, and detyrosinated microtubules represent the same subset of the cells' total network. Posttranslational modification, however, is not a prerequisite for microtubule stability and vice versa. Potorous tridactylis kidney cells have no detectable acetylated microtubules but do have a sizable subset of stable ones, and chick embryo fibroblast cells are extensively modified but have few stable microtubules. We conclude that different cell types can create specific microtubule subsets by modulating the relative rates of posttranslational modification and microtubule turnover.  相似文献   

6.
Calpha-formylglycine is the catalytic residue of sulfatases. Formylglycine is generated by posttranslational modification of a cysteine (pro- and eukaryotes) or serine (prokaryotes) located in a conserved (C/S)XPXR motif. The modifying enzymes are unknown. AtsB, an iron-sulfur protein, is strictly required for modification of Ser(72) in the periplasmic sulfatase AtsA of Klebsiella pneumoniae. Here we show (i) that AtsB is a cytosolic protein acting on newly synthesized serine-type sulfatases, (ii) that AtsB-mediated FGly formation is dependent on AtsA's signal peptide, and (iii) that the cytosolic cysteine-type sulfatase of Pseudomonas aeruginosa can be converted into a substrate of AtsB if the cysteine is substituted by serine and a signal peptide is added. Thus, formylglycine formation in serine-type sulfatases depends both on AtsB and on the presence of a signal peptide, and AtsB can act on sulfatases of other species. AtsB physically interacts with AtsA in a Ser(72)-dependent manner, as shown in yeast two-hybrid and GST pull-down experiments. This strongly suggests that AtsB is the serine-modifying enzyme and that AtsB relies on a cytosolic function of the sulfatase's signal peptide.  相似文献   

7.
We demonstrate the ability of Pseudomonas putida KT2440, Pseudomonas syringae pv. tomato DC3000 and Pseudomonas stutzeri DSM10701 to posttranslationally activate carrier protein (CP) domains of various polyketide synthases, nonribosomal peptide synthetases, and fatty acid synthase by their intrinsic phosphopantetheinyl transferase. The apo-form is modified to the holo-form of the CP by attaching a phosphopantetheine moiety from coenzymeA to a conserved serine residue. The coding regions of the respective domains were cloned in order to generate C-terminal fusions with intein-chitin. The constructs were subcloned into a broad host range vector and transferred into the three pseudomonad hosts. The resulting recombinant pseudomonad strains were cultivated and each fusion protein was purified by affinity chromatography. Each purified CP was analysed using MALDI/TOF for the expected mass increase. Of the seven CPs tested, six could be purified from P. putida, which was chosen as the general host strain. Out of the six domains, five were completely activated, whereas only 5% of the protein of the sixth domain was in holo-form. Four domains were also expressed in the other hosts.  相似文献   

8.
Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been identified as controlling these complicated membrane dynamics during macroautophagy in yeast; approximately half of these genes are clearly conserved up to human, and there are additional genes whose products function in autophagy in higher eukaryotes that are not found in yeast. The function of the ATG proteins, in particular their ability to interact with a number of macroautophagic regulators, is modulated by posttranslational modifications (PTMs) such as phosphorylation, glycosylation, ubiquitination, acetylation, lipidation, and proteolysis. In this review, we summarize our current knowledge of the role of ATG protein PTMs and their functional relevance in macroautophagy. Unraveling how these PTMs regulate ATG protein function during macroautophagy will not only reveal fundamental mechanistic insights into the regulatory process, but also provide new therapeutic targets for the treatment of autophagy-associated diseases.  相似文献   

9.
Posttranslational modification of therapeutic proteins in plants   总被引:2,自引:0,他引:2  
Plants have emerged as an alternative to current systems for the production of therapeutic proteins. The advantages of plants for the low-cost and large-scale production of safe and biologically active mammalian proteins have been documented recently. A major advantage of transgenic plants over production systems that are based on yeast or Escherichia coli is their ability to perform most of the posttranslational modifications (PTMs) that are required for the bioactivity and pharmacokinetics of recombinant therapeutic proteins. Furthermore, recent advances in the control of PTMs in transgenic plants have made it possible for plants to perform, at least to some extent, human-like modifications of recombinant proteins. Hence, plants have become a suitable alternative to animal cell factories for the production of therapeutic proteins.  相似文献   

10.
《Autophagy》2013,9(1):28-45
Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been identified as controlling these complicated membrane dynamics during macroautophagy in yeast; approximately half of these genes are clearly conserved up to human, and there are additional genes whose products function in autophagy in higher eukaryotes that are not found in yeast. The function of the ATG proteins, in particular their ability to interact with a number of macroautophagic regulators, is modulated by posttranslational modifications (PTMs) such as phosphorylation, glycosylation, ubiquitination, acetylation, lipidation, and proteolysis. In this review, we summarize our current knowledge of the role of ATG protein PTMs and their functional relevance in macroautophagy. Unraveling how these PTMs regulate ATG protein function during macroautophagy will not only reveal fundamental mechanistic insights into the regulatory process, but also provide new therapeutic targets for the treatment of autophagy-associated diseases.  相似文献   

11.
Three polypeptides that compose neurofilaments, designated H, M, and L, are synthesized in the cell bodies of neurons and subsequently conveyed down their axons by the process of slow axonal transport. The axonal form of H, which is a component of the cross bridges between the neurofilaments, is antigenically different from the form in the cell bodies and dendrites. To understand how this special form of H is directed to the axon, and more generally how intracellular differentiation is established and maintained by the selective delivery of different molecular species to different compartments of a cell, we have studied the events that occur immediately after the synthesis of the three neurofilament polypeptides in the retinas of rabbits. We observed that H and M are synthesized in the retina as precursor polypeptides, EH and EM, that migrate markedly faster on SDS polyacrylamide gels than their mature axonal forms. The maturation of these precursors requires more than one day and appears to involve their phosphorylation. Only the electrophoretically mature forms appear in the axons of the retinal ganglion cells in the optic nerve. We consider the following interpretation of these observations. Shortly after they are translated in the cell body, the neurofilament polypeptides become phosphorylated at multiple sites. However, only after they have moved a distance of several hundred micrometers down the axon, H and M are phosphorylated at additional sites, causing their conformation or binding properties to change. This change, which is reflected in the reduction of their electrophoretic mobility and the appearance of new antigenic determinants, may function to alter the H-mediated crossbridges and produces the morphological and structural properties of the neurofilament lattice that is characteristic of axons.  相似文献   

12.
alphaA-crystallin is a major protein component of the human lens. It is known to undergo posttranslational modification. This study was done to further elucidate the temporal and spatial nature of these posttranslational modifications and to correlate the modified forms with electrophoretic migration. We dissected normal human lenses into concentric shells of fiber cells, separated the proteins by two-dimensional electrophoresis, and identified modified forms by mass spectrometry. We found that alphaA-crystallin migrated as a major spot and in over 20 additional protein spots. The extent of modification correlated with the age of the fiber cells and the depth within a lens. A correlation was also seen between these parameters and the concentration of modified forms that had full-length sequences but migrated at more acidic positions. These proteins were phosphorylated, acetylated, and/or deamidated. A few proteins migrated to a more basic position than the major form of alphaA-crystallin. The locations of several species that were truncated after C-terminal residues Ser172 and Ser162 were identified. Each of these species had intact N termini. The similarity of the C-terminal cleavage sites found in alphaA- and alphaB-crystallins was noted.  相似文献   

13.
14.
Posttranslational modification of proteins by isoprenoids in mammalian cells   总被引:27,自引:0,他引:27  
W A Maltese 《FASEB journal》1990,4(15):3319-3328
Isoprenylation is a posttranslational modification that involves the formation of thioether bonds between cysteine and isoprenyl groups derived from pyrophosphate intermediates of the cholesterol biosynthetic pathway. Numerous isoprenylated proteins have been detected in mammalian cells. Those identified include K-, N-, and H-p21ras, ras-related GTP-binding proteins such as G25K (Gp), nuclear lamin B and prelamin A, and the gamma subunits of heterotrimeric G proteins. The modified cysteine is located in the fourth position from the carboxyl terminus in every protein where this has been studied. For p21ras, the last three amino acids are subsequently removed and the exposed cysteine is carboxylmethylated. Similar processing events may occur in lamin B and G protein gamma subunits, but the proteolytic cleavage in prelamin A occurs upstream from the modified cysteine. Lamin B and p21ras are modified by C15 farnesyl groups, whereas other proteins such as the G protein gamma subunits are modified by C20 geranylgeranyl chains. Separate enzymes may catalyze these modifications. The structural features that govern the ability of particular proteins to serve as substrates for isoprenylation by C15 or C20 groups are not completely defined, but studies of the p21ras modification using purified farnesyl:protein transferase suggest that the sequence of the carboxyl-terminal tetrapeptide is important. Isoprenylation plays a critical role in promoting the association of p21ras and the lamins with the cell membrane and nuclear envelope, respectively. Future studies of the role of isoprenylation in the localization and function of ras-related GTP-binding proteins and signal-transducing G proteins should provide valuable new insight into the link between isoprenoid biosynthesis and cell growth.  相似文献   

15.
We have previously shown that the 12-kDa capsid protein (p12) of herpes simplex virus type 1 (HSV-1) is a gamma 2 (true late) gene product encoded by the UL35 open reading frame (D. S. McNabb and R. J. Courtney, J. Virol. 66:2653-2663, 1992). To extend the characterization of p12, we have investigated the posttranslational modifications and intracellular localization of the 12-kDa polypeptide. These studies have demonstrated that p12 is modified by phosphorylation at serine and threonine residues. In addition, analysis of p12 by acid-urea gel electrophoresis has indicated that the protein can be resolved into three components, designated p12a, p12b, and p12c. Using isotopic-labeling and alkaline phosphatase digestion experiments, we have determined that p12a and p12b are phosphorylated forms of the protein, and p12c is likely to represent the unphosphorylated polypeptide. The kinetics of phosphorylation was examined by pulse-chase radiolabeling, and these studies indicated that p12c can be completely converted into p12a and p12b following a 4-h chase. All three species of p12 were found to be associated with purified HSV-1 virions; however, p12b and p12c represented the most abundant forms of the protein within viral particles. We have also examined the intracellular localization of p12 by cell fractionation and indirect immunofluorescence techniques. These results indicated that p12 is predominantly localized in the nucleus of HSV-1-infected cells and appears to be restricted to specific regions within the nucleus.  相似文献   

16.
Two different enzymes exhibiting 6-phosphofructo-1-kinase (PFK1) activity were isolated from the mycelium of Aspergillus niger: the native enzyme with a molecular mass of 85 kDa, which corresponded to the calculated molecular mass of the deduced amino acid sequence of the A. niger pfkA gene, and a shorter protein of approximately 49 kDa. A fragment of identical size also was obtained in vitro by the proteolytic digestion of the partially purified native PFK1 with proteinase K. When PFK1 activity was measured during the proteolytic degradation of the native protein, it was found to be lost after 1 h of incubation, but it was reestablished after induction of phosphorylation by adding the catalytic subunit of cyclic AMP-dependent protein kinase to the system. By determining kinetic parameters, different ratios of activities measured at ATP concentrations of 0.1 and 1 mM were detected with fragmented PFK1, as with the native enzyme. Fructose-2,6-biphosphate significantly increased the Vmax of the fragmented protein, while it had virtually no effect on the native protein. The native enzyme could be purified only from the early stages of growth on a minimal medium, while the 49-kDa fragment appeared later and was activated at the time of a sudden change in the growth rate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of sequential purifications of PFK1 enzymes by affinity chromatography during the early stages of the fungal development suggested spontaneous posttranslational modification of the native PFK1 in A. niger cells, while from the kinetic parameters determined for both isolated forms it could be concluded that the fragmented enzyme might be more efficient under physiological conditions.  相似文献   

17.
Posttranslational modification of Ag is implicated in several autoimmune diseases. In celiac disease, a cereal gluten-induced enteropathy with several autoimmune features, T cell recognition of the gluten Ag is heavily dependent on the posttranslational conversion of Gln to Glu residues. Evidence suggests that the enhanced recognition of deamidated gluten peptides results from improved peptide binding to the MHC and TCR interaction with the peptide-MHC complex. In this study, we report that there is a biased usage of TCR Vβ6.7 chain among TCRs reactive to the immunodominant DQ2-α-II gliadin epitope. We isolated Vβ6.7 and DQ2-αII tetramer-positive CD4(+) T cells from peripheral blood of gluten-challenged celiac patients and sequenced the TCRs of a large number of single T cells. TCR sequence analysis revealed in vivo clonal expansion, convergent recombination, semipublic response, and the notable conservation of a non-germline-encoded Arg residue in the CDR3β loop. Functional testing of a prototype DQ2-α-II-reactive TCR by analysis of TCR transfectants and soluble single-chain TCRs indicate that the deamidated residue in the DQ2-α-II peptide poses constraints on the TCR structure in which the conserved Arg residue is a critical element. The findings have implications for understanding T cell responses to posttranslationally modified Ags.  相似文献   

18.
Putrescine, spermidine, and spermine, as well as other primary amine substances, when added exogenously to growth-stimulated systems, inhibit ornithine decarboxylase (ODC) activity in a dose- and time-dependent manner. Evidence is presented to support a direct posttranslational modification of ODC by transglutaminase-mediated putrescine incorporation. Purified ODC serves as an acceptor protein for putrescine in the presence of transglutaminase purified from guinea pig liver. The transamidation of putrescine to ODC results in a linear decrease in activity. The Km for putrescine is 0.4 mM and the Ki for putrescine inhibition of ODC activity by transglutaminase is 0.4 mM. The kinetics are identical to those reported for physiological systems. In regenerating rat liver, protein conjugated putrescine parallels increased transglutaminase activity and the rapid disappearance of ODC activity at 8 h. These data strongly suggest that posttranslational modification of ODC by putrescine may be an important regulatory step in the trophic cascade.  相似文献   

19.
Cell-to-cell communication is absolutely essential for multicellular organisms. Both animals and plants use chemicals called hormones for intercellular signaling. However, multicellularity of plants and animals has evolved independently, which led to establishment of distinct strategies in order to cope with variations in an ever-changing environment.The phytohormone auxin is crucial to plant development and patterning. PIN auxin efflux carrier-driven polar auxin transport regulates plant development as it controls asymmetric auxin distribution (auxin gradients), which in turn modulates a wide range of developmental processes. Internal and external cues trigger a number of posttranslational PIN auxin carrier modifications that were demonstrated to decisively influence variations in adaptive growth responses. In this review, we highlight recent advances in the analysis of posttranslational modification of PIN auxin efflux carriers, such as phosphorylation and ubiquitylation, and discuss their eminent role in directional vesicle trafficking, PIN protein de-/stabilization and auxin transport activity. We conclude with updated models, in which we attempt to integrate the mechanistic relevance of posttranslational modifications of PIN auxin carriers for the dynamic nature of plant development.  相似文献   

20.
Analysis of the pronase-derived glycopeptides of isolated mumps virus glycoproteins revealed the presence of both complex and high-mannose-type oligosaccharides on the HN and F1 glycoproteins, whereas only high-mannose-type glycopeptides were detected on F2. Endoglycosidase F, a newly described glycosidase that cleaves N-linked high mannose as well as complex oligosaccharides, appeared to completely cleave the oligosaccharides linked to HN and F2, whereas F1 was resistant to the enzyme. Two distinct cleavage products of F2 were observed, suggesting the presence of two oligosaccharide side chains. Tunicamycin was found to reduce the infectious virus yield and inhibit mumps virus particle formation. The two glycoproteins, HN and F, were not found in the presence of the glycosylation inhibitor. However, two new polypeptides were detected, with molecular weights of 63,000 (HNT) and 53,000 (FT), respectively, which may represent nonglycosylated forms of the glycoproteins. Synthesis of the nonglycosylated virus-coded proteins (L, NP, P, M, pI, and pII) was not affected by tunicamycin. The formation of HN oligomers and the proteolytic cleavage of the F protein were found to occur with the same kinetics. Analysis of the time course of appearance of mumps virus glycoproteins on the cell surface suggested that dimerization of HN and cleavage of F occur immediately after their exposure on the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号