首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic analysis has finally come of age in the study of neural cell adhesion molecules and their function during growth cone guidance in Drosophila. Recent studies have shown that fasciclin II, a neural cell adhesion molecule of the immunoglobulin superfamily, functions as a recognition molecule for the MP1 axon pathway, thus serving as the first molecular confirmation for the existence of functional labels on specific axon pathways in the developing organism.  相似文献   

2.
K Zinn  L McAllister  C S Goodman 《Cell》1988,53(4):577-587
The fasciclin I, II, and III glycoproteins are expressed on different subsets of axon bundles (fascicles) in insect embryos and are thus candidates for surface recognition molecules involved in growth cone guidance. Here we present the sequence of grasshopper fasciclin I and the identification and sequence of the Drosophila fasciclin I homolog. In both species, fasciclin I appears to be an extrinsic membrane protein with a signal sequence but no transmembrane region; the protein comprises four homologous domains of approximately 150 amino acids each. Antibodies against Drosophila fasciclin I reveal that it is expressed on the surface of a subset of commissural axon pathways in the embryonic central nervous system and on all sensory axon pathways in the peripheral nervous system. This pattern of expression is similar to that in grasshopper.  相似文献   

3.
Monoclonal antibody 6F8 was used to characterize and clone fasciclin IV, a new axonal glycoprotein in the grasshopper, and to study its function during growth cone guidance. Fasciclin IV is dynamically expressed on a subset of axon pathways in the developing CNS and on circumferential bands of epithelial cells in developing limb buds. One of these bands corresponds to the location where the growth cones of the Ti1 pioneer neurons make a characteristic turn while extending toward the CNS. Embryos cultured in the 6F8 antibody or Fab exhibit aberrant formation of this axon pathway. cDNA sequence analysis suggests that fasciclin IV has a signal sequence; long extracellular, transmembrane, and short cytoplasmic domains; and shows no homology with any protein in the available data bases. Thus, fasciclin IV appears to be a novel integral membrane protein that functions in growth cone guidance.  相似文献   

4.
Drosophila fasciclin I is a homophilic cell adhesion molecule expressed in the developing embryo on the surface of a subset of fasciculating CNS axons, all PNS axons, and some nonneuronal cells. We have identified protein-null mutations in the fasciclin I (fas I) gene, and show that these mutants are viable and do not display gross defects in nervous system morphogenesis. The Drosophila Abelson (abl) proto-oncogene homolog encodes a cytoplasmic tyrosine kinase that is expressed during embryogenesis primarily in developing CNS axons; abl mutants show no gross defects in CNS morphogenesis. However, embryos doubly mutant for fas I and abl display major defects in CNS axon pathways, particularly in the commissural tracts where expression of these two proteins normally overlaps. The double mutant shows a clear defect in growth cone guidance; for example, the RP1 growth cone (normally fas I positive) does not follow its normal path across the commissure.  相似文献   

5.
A number of different cell surface glycoproteins expressed in the central nervous system (CNS) have been identified in insects and shown to mediate cell adhesion in tissue culture systems. The fasciclin I protein is expressed on a subset of CNS axon pathways in both grasshopper and Drosophila. It consists of four homologous 150-amino acid domains which are unrelated to other sequences in the current databases, and is tethered to the cell surface by a glycosyl-phosphatidylinositol linkage. In this paper we examine in detail the expression of fasciclin I mRNA and protein during Drosophila embryonic development. We find that fasciclin I is expressed in several distinct patterns at different stages of development. In blastoderm embryos it is briefly localized in a graded pattern. During the germ band extended period its expression evolves through two distinct phases. Fasciclin I mRNA and protein are initially localized in a 14-stripe pattern which corresponds to segmentally repeated patches of neuroepithelial cells and neuroblasts. Expression then becomes confined to CNS and peripheral sensory (PNS) neurons. Fasciclin I is expressed on all PNS neurons, and this expression is stably maintained for several hours. In the CNS, fasciclin I is initially expressed on all commissural axons, but then becomes restricted to specific axon bundles. The early commissural expression pattern is not observed in grasshopper embryos, but the later bundle-specific pattern is very similar to that seen in grasshopper. The existence of an initial phase of expression on all commissural bundles helps to explain the loss-of-commissures phenotype of embryos lacking expression of both fasciclin I and of the D-abl tyrosine kinase. Fasciclin I is also expressed in several nonneural tissues in the embryo.  相似文献   

6.
Fasciclin III: a novel homophilic adhesion molecule in Drosophila   总被引:16,自引:0,他引:16  
P M Snow  A J Bieber  C S Goodman 《Cell》1989,59(2):313-323
Drosophila fasciclin III is an integral membrane glycoprotein that is expressed on a subset of neurons and fasciculating axons in the developing CNS, as well as in several other tissues during development. Here we report on the isolation of a full-length cDNA encoding an 80 kd form of fasciclin III. We have used this cDNA, under heat shock control, to transfect the relatively nonadhesive Drosophila S2 cell line. Examination of these transfected cells indicates that fasciclin III is capable of mediating adhesion in a homophilic, Ca2+-independent manner. Sequence analysis reveals that fasciclin III encodes a transmembrane protein with no significant homology to any known protein, including the previously characterized families of vertebrate cell adhesion molecules. The distribution of this adhesion molecule on subsets of fasciculating axons and growth cones during Drosophila development suggests that fasciclin III plays a role in growth cone guidance.  相似文献   

7.
The "labeled pathways" hypothesis predicts that axon fascicles in the embryonic neuropil are differentially labeled by surface recognition molecules used for growth cone guidance. To identify candidates for such recognition molecules, we generated monoclonal antibodies (MAbs) that recognize surface antigens expressed on subsets of axon fascicles in the grasshopper embryo. The 3B11 and 8C6 MAbs immunoprecipitate 70- and 95-kd membrane glycoproteins called fasciclin I and II, respectively, which are expressed on different subsets of axon fascicles during development. These two glycoproteins are expressed regionally on particular portions of embryonic axons in correlation with their patterns of fasciculation, dynamically during the period of axon outgrowth in a manner consistent with a role in growth cone guidance, and at other times and places during embryogenesis, suggesting multiple developmental roles.  相似文献   

8.
Fasciclin I is a homophilic neural cell adhesion molecule which is regionally expressed on a subset of fasciculating axons in both the grasshopper and Drosophila embryo, suggesting a role in axonal recognition. It is also dynamically expressed on a variety of other embryonic tissues. Biochemical analysis of the fasciclin I glycoprotein from Drosophila embryonic membranes and Schneider 1 cells indicates that it is tightly associated with the lipid bilayer by a phosphatidylinositol lipid moiety. In Drosophila embryos a large fraction of fasciclin I protein has lost its membrane anchor. The ratio of this soluble form to the phosphatidylinositol-linked form changes during embryogenesis. We speculate that removal of the phosphatidylinositol lipid from the fasciclin I protein could be a mechanism to regulate its adhesive function.  相似文献   

9.
Cell surface proteins anchored to membranes via covalently attached glycosyl-phosphatidylinositol (GPI) have been implicated in neuronal adhesion, promotion of neurite outgrowth and directed cell migration. Treatment of grasshopper embryos with bacterial phosphatidylinositol-specific phospholipase C (PI-PLC), an enzyme that cleaves the GPI anchor, often induced disruptions in the highly stereotyped migrations of peripheral pioneer growth cones and afferent neuron cell bodies. In distal limb regions of embryos treated with PI-PLC at early stages of pioneer axon outgrowth, growth cones lost their proximal orientation toward the central nervous system (CNS) and turned distally. Pioneer growth cones in treated limbs also failed to make a characteristic ventral turn along the trochanter-coxa (Tr-Cx) segment boundary, and instead continued to grow proximally across the boundary. Treatment at an earlier stage of development caused pre-axonogenesis Cx1 neurons to abandon their normal circumferential migration and reorient toward the CNS. None of these abnormal phenotypes were observed in limbs of untreated embryos or embryos exposed to other phospholipases that do not release GPI-anchored proteins. Incubation of embryos with PI-PLC effectively removed immunoreactivity for fasciclin I, a GPI-anchored protein expressed on a subset of neuronal surfaces. These results suggest that cell surface GPI-anchored proteins are involved in pioneer growth cone guidance and in pre-axonogenesis migration of neurons in the grasshopper limb bud in vivo.  相似文献   

10.
N H Patel  P M Snow  C S Goodman 《Cell》1987,48(6):975-988
To identify candidates for neuronal recognition molecules in Drosophila, we used monoclonal antibodies to search for surface glycoproteins expressed on subsets of axon bundles (or fascicles) during development. Here we report on the characterization and cloning of fasciclin III, which is expressed on a subset of neurons and axon pathways in the Drosophila embryo. Fasciclin III is also expressed at other times and places including transient segmentally repeated patches in the neuroepithelium and segmentally repeated stripes in the body epidermis. Antisera generated against each of four highly related forms of the protein were used for cDNA expression cloning to identify a single gene, which was confirmed to encode fasciclin III by tissue in situ hybridization and genetic deficiency analysis.  相似文献   

11.
Jia L  Emmons SW 《Genetics》2006,173(3):1241-1258
We have studied how a set of male-specific sensory neurons in Caenorhabditis elegans establish axonal connections during postembryonic development. In the adult male, 9 bilateral pairs of ray sensory neurons innervate an acellular fan that serves as a presumptive tactile and olfactory organ during copulation. We visualized ray axon commissures with a ray neuron-specific reporter gene and studied both known and new mutations that affect the establishment of connections to the pre-anal ganglion. We found that the UNC-6/netrin-UNC-40/DCC pathway provides the primary dorsoventral guidance cue to ray axon growth cones. Some axon growth cones also respond to an anteroposterior cue, following a segmented pathway, and most or all also have a tendency to fasciculate. Two newly identified genes, rax-1 and rax-4, are highly specific to the ray neurons and appear to be required for ray axon growth cones to respond to the dorsoventral cue. Among other genes we identified, rax-2 and rax-3 affect anteroposterior signaling or fate specification and rax-5 and rax-6 affect ray identities. We identified a mutation in sax-2 and show that the sax-2/Furry and sax-1/Tricornered pathway affects ectopic neurite outgrowth and establishment of normal axon synapses. Finally, we identified mutations in genes for muscle proteins that affect axon pathways by distorting the conformation of the body wall. Thus ray axon pathfinding relies on a variety of general and more ray neuron-specific genes and provides a potentially fruitful system for further studies of how migrating axon growth cones locate their targets. This system is applicable to the study of mechanisms underlying topographic mapping of sensory neurons into target circuitry where the next stage of information processing is carried out.  相似文献   

12.
Tyrosine phosphorylation-dependent signaling cascades play key roles in determining the formation of an axon pathway. The cytoplasmic Abelson tyrosine kinase participate in several signaling pathways that orchestrate both growth cone advance and steering in response to guidance cues. Here, a genetic approach is used to evaluate the role for Abelson in growth cones during a decision to cross or not to cross the Drosophila embryonic midline. Our data indicate that both loss- and gain-of-function conditions for Abl cause neurons within the pCC/MP2 pathway to project across the midline incorrectly. The frequency of abnormal crossovers is enhanced by mutations in the genes encoding the midline repellent, Slit, or its receptor, Roundabout. In comm mutants, where repulsive signals remain elevated, increasing or decreasing Abl activity partially rescues commissure formation. Thus, both too much and too little Abl activity causes axons to cross the midline inappropriately, indicating that Abl plays a critical role in transducing midline repulsive cues. How Abl functions in this role is not yet clear, but we suggest that Abl may help regulate cytoskeletal dynamics underlying a growth cone's response to midline cues.  相似文献   

13.
The insect cell adhesion receptor fasciclin II is expressed by specific subsets of neural and non-neural cells during embryogenesis and has been shown to control growth cone motility and axonal fasciculation. Here we demonstrate a role for fasciclin II in the guidance of migratory neurons. In the developing enteric nervous system of the moth Manduca sexta, an identified set of neurons (the EP cells) undergoes a stereotyped sequence of migration along the visceral muscle bands of the midgut prior to their differentiation. Probes specific for Manduca fasciclin II show that while the EP cells express fasciclin II throughout embryogenesis, their muscle band pathways express fasciclin II only during the migratory period. Manipulations of fasciclin II in embryonic culture using blocking antibodies, recombinant fasciclin II fragments, and enzymatic removal of glycosyl phosphatidylinositol-linked fasciclin II produced concentration-dependent reductions in the extent of EP cell migration. These results support a novel role for fasciclin II, indicating that this homophilic adhesion molecule is required for the promotion or guidance of neuronal migration.  相似文献   

14.
In leech, the central annulus of each midbody segment possesses seven pairs of sensilla, which are mixed clusters of primary peripheral sensory neurons that extend their axons into the CNS where they segregate into distinct fascicles. Pathway selection by individual afferent growth cones of sensillar neurons was examined by double labeling using intracellular dye-filling with anitobody labeling in early Hirudo medicinalis embryos. The monoclonal antibody Lan3–2 was used because sensillar neuronal tracts are specifically labeled by this antibody. Examining 68 individually filled neurons we found that sensillar neuron growth cones bifurcate within the CNS, that they project long filopodia capable to sampling the local environment, and that all of them appeared to choose a single particular CNS fascicle without apparent retraction or realignment of growth cones. Furthermore, each side of the bifurcating afferent growth cones always chose the same fascicle, implying a specific choice of a distinct labeled pathway. By dye-filling individual central neurons (P-cells), we show that there are centrally projecting axons present at the time sensillar afferents enter the ganglionic primordia and select a particular fascicle, and we confirm that at least the dorsal peripheral nerve is likely to be pioneered by central neurons, not by the peripheral afferent. In the sensillum studied here, we sound examples of sensory neurons extending axons into one of all the avilable fascicles. Thus, an individual embryonic sensillum possesses a heterogeneous population of afferents with respect to the central fascicle chosen. This is consistent with the idea that segregation into distinct axon fascicles may be based upon functional differences between individual afferent neurons. Our findings argue strongly in favor of specific pathway selection by afferents in this system and are consistent with previous suggestions that there exists a hierarchy of cues, including surface glycoconjugates that mediate navigation of the sensillar growth cones and the fasciculation of their axons. 1994 John Wiley & Sons, Inc.  相似文献   

15.
Fasciclin I is a membrane-associated glycoprotein that is regionally expressed on a subset of fasciculating axons during neuronal development in insects; it is expressed on apposing cell surfaces, suggesting a role in specific cell adhesion. In this paper we show that Drosophila fasciclin I is a novel homophilic cell adhesion molecule. When the nonadhesive Drosophila S2 cells are transfected with the fasciclin I cDNA, they form aggregates that are blocked by antisera against fasciclin I. When cells expressing fasciclin I are mixed with cells expressing fasciclin III, another Drosophila homophilic adhesion molecule, the mixture sorts into aggregates homogeneous for either fasciclin I- or fasciclin III-expressing cells. The ability of these two novel adhesion molecules to mediate cell sorting in vitro suggests that they might play a similar role during neuronal development.  相似文献   

16.
Yu HH  Huang AS  Kolodkin AL 《Genetics》2000,156(2):723-731
Semaphorins comprise a large family of phylogenetically conserved secreted and transmembrane glycoproteins, many of which have been implicated in repulsive axon guidance events. The transmembrane semaphorin Sema-1a in Drosophila is expressed on motor axons and is required for the generation of neuromuscular connectivity. Sema-1a can function as an axonal repellent and mediates motor axon defasciculation. Here, by manipulating the levels of Sema-1a and the cell adhesion molecules fasciclin II (Fas II) and connectin (Conn) on motor axons, we provide further evidence that Sema-1a mediates axonal defasciculation events by acting as an axonally localized repellent and that correct motor axon guidance results from a balance between attractive and repulsive guidance cues expressed on motor neurons.  相似文献   

17.
Simpson JH  Kidd T  Bland KS  Goodman CS 《Neuron》2000,28(3):753-766
Previous studies showed that Roundabout (Robo) in Drosophila is a repulsive axon guidance receptor that binds to Slit, a repellent secreted by midline glia. In robo mutants, growth cones cross and recross the midline, while, in slit mutants, growth cones enter the midline but fail to leave it. This difference suggests that Slit must have more than one receptor controlling midline guidance. In the absence of Robo, some other Slit receptor ensures that growth cones do not stay at the midline, even though they cross and recross it. Here we show that the Drosophila genome encodes three Robo receptors and that Robo and Robo2 have distinct functions, which together control repulsive axon guidance at the midline. The robo,robo2 double mutant is largely identical to slit.  相似文献   

18.
19.
H Hing  J Xiao  N Harden  L Lim  S L Zipursky 《Cell》1999,97(7):853-863
The SH2/SH3 adaptor protein Dock has been proposed to transduce signals from guidance receptors to the actin cytoskeleton in Drosophila photoreceptor (R cell) growth cones. Here, we demonstrate that Drosophila p21-activated kinase (Pak) is required in a Dock pathway regulating R cell axon guidance and targeting. Dock and Pak colocalize to R cell axons and growth cones, physically interact, and their loss-of-function phenotypes are indistinguishable. Normal patterns of R cell connectivity require Pak's kinase activity and binding sites for both Dock and Cdc42/Rac. A membrane-tethered form of Pak (Pak(myr) acts as a dominant gain-of-function protein. Retinal expression of Pak(myr) rescues the R cell connectivity phenotype in dock mutants. These data establish Pak as a critical regulator of axon guidance and a downstream effector of Dock in vivo.  相似文献   

20.
The pattern of axon growth from the population of neurons that pioneers the major axon pathways in the central nervous system is highly conserved in winged insects. This study sought to determine whether the same pattern of axon growth is shared by an apterygotic insect, the silverfish. We have found that homologues to at least nine early differentiating winged insect neurons are present in the silverfish. The axon trajectories and the sequence of axon outgrowth from these neurons are very similar in silverfish and winged insects, suggesting that the pterygotic and apterygotic insects share a common developmental Bauplan for the construction of the central nervous system. Some of these neurons do show differences in several aspects of axon growth, including the relative timing of axonogenesis, the polarity of axon growth and the pattern of axon fasciculation. In addition, a major, early-appearing fascicle in the posterior commissure of the silverfish is pioneered by a neuron which does not appear to have an equivalent in the winged insects. These differences are similar in character to, albeit more pronounced than, differences previously reported between two winged insects, the fruitfly Drosophila and the grasshopper. Some of the features of early central axon growth, that set the silverfish embryo apart from the winged insects, are shared by crustacean embryos, providing support for the claim that insects and crustaceans share a common developmental Bauplan for the construction of central axonal pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号