首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Cytotoxic lipid peroxides such as 4-hydroxy-2-nonenal (HNE) are produced when cells are exposed to toxic chemicals. However, the mechanism by which HNE induces cell death has been poorly understood. In this study, we investigated the molecular mechanism of HNE-induced apoptosis in PC12 cells by measuring the activities of the mitogen-activated protein (MAP) kinases involved in early signal transduction pathways. Within 15-30 min after HNE treatment, c-Jun N-terminal protein kinase (JNK) was maximally activated, before returning to control level after 1 h post-treatment. In contrast, activities of extracellular signal regulated kinase (ERK) and p38 MAP kinase remained unchanged from their basal levels. SEK1, an upstream kinase of JNK, was also activated (phosphorylated) within 5 min after HNE treatment and remained activated for up to 60 min. Marked activation of the JNK pathway through SEK1 was demonstrated by the transient transfection of cDNA for wild type SEK1 and JNK into COS-7 cells. Furthermore, significant reductions in JNK activation and HNE-induced cell death were observed when the dominant negative mutant of SEK1 was co-transfected with JNK. Pretreatment of PC12 cells with a survival promoting agent, 8-(4-chlorophenylthio)-cAMP, prevented both the HNE-induced JNK activation and apoptosis. Nonaldehyde, a nontoxic aldehyde, caused neither apoptosis nor JNK activation. Pretreatment of PC12 cells with SB203580, a specific inhibitor of p38 MAP kinase, had no effect on HNE-induced apoptosis. All these data suggest that the HNE-mediated apoptosis of PC12 cells is likely to be mediated through the selective activation of the SEK1-JNK pathway without activation of ERK or p38 MAP kinase.  相似文献   

3.
Cytotoxic lipid peroxides such as 4-hydroxy-2-nonenal (HNE) are produced when cells are exposed to toxic chemicals. However, the mechanism by which HNE induces cell death has been poorly understood. In this study, we investigated the molecular mechanism of HNE-induced apoptosis in PC12 cells by measuring the activities of the mitogen-activated protein (MAP) kinases involved in early signal transduction pathways. Within 15–30 min after HNE treatment, c-Jun N-terminal protein kinase (JNK) was maximally activated, before returning to control level after 1 h post-treatment. In contrast, activities of extracellular signal regulated kinase (ERK) and p38 MAP kinase remained unchanged from their basal levels. SEK1, an upstream kinase of JNK, was also activated (phosphorylated) within 5 min after HNE treatment and remained activated for up to 60 min. Marked activation of the JNK pathway through SEK1 was demonstrated by the transient transfection of cDNA for wild type SEK1 and JNK into COS-7 cells. Furthermore, significant reductions in JNK activation and HNE-induced cell death were observed when the dominant negative mutant of SEK1 was co-transfected with JNK. Pretreatment of PC12 cells with a survival promoting agent, 8-(4-chlorophenylthio)-cAMP, prevented both the HNE-induced JNK activation and apoptosis. Nonaldehyde, a nontoxic aldehyde, caused neither apoptosis nor JNK activation. Pretreatment of PC12 cells with SB203580, a specific inhibitor of p38 MAP kinase, had no effect on HNE-induced apoptosis. All these data suggest that the HNE-mediated apoptosis of PC12 cells is likely to be mediated through the selective activation of the SEK1-JNK pathway without activation of ERK or p38 MAP kinase.  相似文献   

4.
Kim MJ  Chae JS  Kim KJ  Hwang SG  Yoon KW  Kim EK  Yun HJ  Cho JH  Kim J  Kim BW  Kim HC  Kang SS  Lang F  Cho SG  Choi EJ 《The EMBO journal》2007,26(13):3075-3085
Serum- and glucocorticoid-inducible protein kinase 1 (SGK1) has been implicated in diverse cellular activities including the promotion of cell survival. The molecular mechanism of the role of SGK1 in protection against cellular stress has remained unclear, however. We have now shown that SGK1 inhibits the activation of SEK1 and thereby negatively regulates the JNK signaling pathway. SGK1 was found to physically associate with SEK1 in intact cells. Furthermore, activated SGK1 mediated the phosphorylation of SEK1 on serine 78, resulting in inhibition of the binding of SEK1 to JNK1, as well as to MEKK1. Replacement of serine 78 of SEK1 with alanine abolished SGK1-mediated SEK1 inhibition. Oxidative stress upregulated SGK1 expression, and depletion of SGK1 by RNA interference potentiated the activation of SEK1 induced by oxidative stress in Rat2 fibroblasts. Moreover, such SGK1 depletion prevented the dexamethasone-induced increase in SGK1 expression, as well as the inhibitory effects of dexamethasone on paclitaxel-induced SEK1-JNK signaling and apoptosis in MDA-MB-231 breast cancer cells. Together, our results suggest that SGK1 negatively regulates stress-activated signaling through inhibition of SEK1 function.  相似文献   

5.
Although oxidative stress causes activation of c-Jun N-terminal kinase (JNK) and apoptosis in many cell types, how the JNK pathway is connected to the apoptosis pathway is unclear. The molecular mechanism of JNK-mediated apoptosis was investigated in adult rat cardiac myocytes in culture as a model system that is sensitive to oxidative stress. Oxidative stress caused JNK activation, cytochrome c release, and apoptosis without new protein synthesis. Oxidative stress-induced apoptosis was abrogated by dominant negative stress-activated protein kinase/extracellular signal-regulated kinase kinase-1 (SEK1)-mediated inhibition of the JNK pathway, whereas activation of the JNK pathway by constitutively active SEK1 was sufficient to cause apoptosis. Inhibition of caspase-9, an apical caspase in the mitochondrial apoptosis pathway, suppressed oxidative stress-induced apoptosis, whereas inhibition of caspase-8 had no effect, indicating that both the JNK pathway and the mitochondrial apoptosis machinery are central to oxidative stress-induced apoptosis. Both JNK and SEK1 localized on mitochondria where JNK was activated by oxidative stress. Furthermore, active JNK caused the release of apoptogenic factors such as cytochrome c from isolated mitochondria in a cell-free assay. These findings indicate that the JNK pathway is a direct activator of mitochondrial death machinery without other cellular components and provide a molecular linkage from oxidative stress to the mitochondrial apoptosis machinery.  相似文献   

6.
Stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK), belonging to the mitogen-activated protein kinase family, plays an important role in stress signaling. SAPK/JNK activation requires the phosphorylation of both Thr and Tyr residues in its Thr-Pro-Tyr motif, and SEK1 and MKK7 have been identified as the dual specificity kinases. In this study, we generated mkk7(-/-) mouse embryonic stem (ES) cells in addition to sek1(-/-) cells and compared the two kinases in terms of the activation and phosphorylation of JNK. Although SAPK/JNK activation by various stress signals was markedly impaired in both sek1(-/-) and mkk7(-/-) ES cells, there were striking differences in the dual phosphorylation profile. The severe impairment observed in mkk7(-/-) cells was accompanied by a loss of the Thr phosphorylation of JNK without marked reduction in its Tyr-phosphorylated level. On the other hand, Thr phosphorylation of JNK in sek1(-/-) cells was also attenuated in addition to a decreased level of its Tyr phosphorylation. Analysis in human embryonic kidney 293T cells transfected with a kinase-dead SEK1 or a Thr-Pro-Phe mutant of JNK1 revealed that SEK1-induced Tyr phosphorylation of JNK1 was followed by additional Thr phosphorylation by MKK7. Furthermore, SEK1 but not MKK7 was capable of binding to JNK1 in 293T cells. These results indicate that the Tyr and Thr residues of SAPK/JNK are sequentially phosphorylated by SEK1 and MKK7, respectively, in the stress-stimulated ES cells.  相似文献   

7.
The protein serine-threonine kinase Akt mediates cell survival signaling initiated by various growth-promoting factors such as insulin. Here we report that SEK1 is a target of Akt in intact cells. Insulin inhibited the anisomycin-induced stimulation of both endogenous SEK1 and its substrate c-Jun N-terminal kinase (JNK), but not that of the upstream kinase MEKK1, in 293T cells. The inhibitory action of insulin on SEK1 or JNK1 activation was prevented by the phosphatidylinositol 3-kinase inhibitor LY294002. Expression of a constitutively active form of Akt also inhibited both SEK1 and JNK1 activation, but not that of MEKK1, in transfected 293T cells. Co-immunoprecipitation analysis revealed that endogenous Akt physically interacted with endogenous SEK1 in cells and that this interaction was promoted by insulin. In vitro and in vivo (32)P labeling indicated that Akt phosphorylated SEK1 on serine 78. The SEK1 mutant SEK1(S78A) was resistant to Akt-induced inhibition. Finally, activated Akt inhibited SEK1-mediated apoptosis, and this effect of Akt was prevented by overexpression of SEK(S78A). Taken together, these results suggest that Akt suppresses stress-activated signaling by targeting SEK1.  相似文献   

8.
Stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK), which belongs to the family of mitogen-activated protein kinase (MAPK), is activated by many types of cellular stress or extracellular signals. Recent studies, including the analysis with knockout cells and mice, have led towards understanding the molecular mechanism of stress-induced SAPK/JNK activation and the physiological roles of SAPK/JNK in embryonic development and immune responses. Two SAPK/JNK activators, SEK1 and MKK7, are required for full activation of SAPK/JNK, which responds to various stimuli in an all-or-none manner in mouse embryonic stem (ES) cells. SAPK/JNK activation plays essential roles in organogenesis during mouse development by regulating cell proliferation, survival or apoptosis and in immune responses by regulating cytokine gene expression. Furthermore, SAPK/JNK is involved in regulation of mRNA stabilization, cell migration, and cytoskeletal integrity. Thus, SAPK/JNK has a wide range of functions in mammalian cells.  相似文献   

9.
Amyloid beta-peptide (Abeta) is implicated as the toxic agent in Alzheimer's disease and is the major component of brain amyloid plaques. In vitro, Abeta causes cell death, but the molecular mechanisms are unclear. We analyzed the early signaling mechanisms involved in Abeta toxicity using the SH-SY5Y neuroblastoma cell line. Abeta caused cell death and induced a 2- to 3-fold activation of JNK. JNK activation and cell death were inhibited by overexpression of a dominant-negative SEK1 (SEK1-AL) construct. Butyrolactone I, a cdk5 inhibitor, had an additional protective effect against Abeta toxicity in these SEK1-AL-expressing cells suggesting that cdk5 and JNK activation independently contributed to this toxicity. Abeta also weakly activated ERK and Akt but had no effect on p38 kinase. Inhibitors of ERK and phosphoinositide 3-kinase (PI3K) pathways did not affect Abeta-induced cell death, suggesting that these pathways were not important in Abeta toxicity. Insulin-like growth factor I protected against Abeta toxicity by strongly activating ERK and Akt and blocking JNK activation in a PI3K-dependent manner. Pertussis toxin also blocked Abeta-induced cell death and JNK activation suggesting that G(i/o) proteins were upstream activators of JNK. The results suggest that activation of the JNK pathway and cdk5 may be initial signaling cascades in Abeta-induced cell death.  相似文献   

10.
M Takekawa  F Posas    H Saito 《The EMBO journal》1997,16(16):4973-4982
A human homolog of the yeast Ssk2 and Ssk22 mitogen-activated protein kinase kinase kinases (MAPKKK) was cloned by functional complementation of the osmosensitivity of the yeast ssk2delta ssk22delta sho1delta triple mutant. This kinase, termed MTK1 (MAP Three Kinase 1), is 1607 amino acids long and is structurally highly similar to the yeast Ssk2 and Ssk22 MAPKKKs. In mammalian cells (COS-7 and HeLa), MTK1 overexpression stimulated both the p38 and JNK MAP kinase pathways, but not the ERK pathway. MTK1 overexpression also activated the MKK3, MKK6 and SEK1 MAPKKs, but not the MEK1 MAPKK. Furthermore, MTK1 phosphorylated and activated MKK6 and SEK1 in vitro. Overexpression of a dominant-negative MTK1 mutant [MTK1(K/R)] strongly inhibited the activation of the p38 pathway by environmental stresses (osmotic shock, UV and anisomycin), but not the p38 activation by the cytokine TNF-alpha. The dominant-negative MTK1(K/R) had no effect on the activation of the JNK pathway or the ERK pathway. These results indicate that MTK1 is a major mediator of environmental stresses that activate the p38 MAPK pathway, and is also a minor mediator of the JNK pathway.  相似文献   

11.
The c-Jun N-terminal kinase (JNK) signaling pathway is involved in transforming growth factor beta (TGF-beta) signaling in a variety of cell systems. We report here that hematopoietic progenitor kinase 1 (HPK1), a novel Ste20-like protein serine/threonine kinase, serves as an upstream mediator for the TGF-beta-activated JNK1 cascade in 293T cells. TGF-beta treatment resulted in a time-dependent activation of HPK1, which was accompanied by similar kinetics of JNK1 activation. The activation of JNK1 by TGF-beta was abrogated by a kinase-defective HPK1 mutant but not by a kinase-defective mutant of kinase homologous to Ste20/Sps1. This result indicates that HPK1 is specifically required for TGF-beta-induced activation of JNK1. We also found that TGF-beta-induced JNK1 activation was blocked by a kinase-defective mutant of TGF-beta-activated kinase 1 (TAK1). In addition, interaction between HPK1 and TAK1 was observed in transient transfection assays, and this interaction was enhanced by TGF-beta treatment. Both stress-activated protein kinase/extracellular signal-regulated kinase kinase (SEK) and mitogen-activated protein kinase kinase 7 (MKK7) are immediate upstream activators of JNK1. Although SEK and MKK7 acted downstream of TAK1, only a kinase-defective SEK mutant blocked TGF-beta-induced activation of JNK1, indicating that the TGF-beta signal is relayed solely through SEK, but not MKK7, in vivo. Furthermore, TGF-beta-induced activating protein 1 activation was blocked by a HPK1 mutant, as well as by TAK1 and SEK mutants. Taken together, these studies establish a potential cascade of TGF-beta-activated interacting kinases beginning with HPK1, a Ste20 homolog, and ending in JNK1 activation: HPK1 --> TAK1 --> SEK --> JNK1.  相似文献   

12.
13.
Stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK), which is a member of the mitogen-activated protein kinase (MAPK) family, plays an important role in a stress-induced signaling cascade. SAPK/JNK activation requires the phosphorylation of Thr and Tyr residues in its Thr-Pro-Tyr motif, and SEK1 (MKK4) and MKK7 (SEK2) have been identified as the upstream MAPK kinases. Here we examined the activation and phosphorylation sites of SAPK/JNK and differentiated the contribution of SEK1 and MKK7alpha1, -gamma1, and -gamma2 isoforms to the MAPK activation. In SEK1-deficient mouse embryonic stem cells, stress-induced SAPK/JNK activation was markedly impaired, and this defect was accompanied with a decreased level of the Tyr phosphorylation. Analysis in HeLa cells co-transfected with the two MAPK kinases revealed that the Thr and Tyr of SAPK/JNK were independently phosphorylated in response to heat shock by MKK7gamma1 and SEK1, respectively. However, MKK7alpha1 failed to phosphorylate the Thr of SAPK/JNK unless its Tyr residue was phosphorylated by SEK1. In contrast, MKK7gamma2 had the ability to phosphorylate both Thr and Tyr residues. In all cases, the dual phosphorylation of the Thr and Tyr residues was essentially required for the full activation of SAPK/JNK. These data provide the first evidence that synergistic activation of SAPK/JNK requires both phosphorylation at the Thr and Tyr residues in living cells and that the preference for the Thr and Tyr phosphorylation was different among the members of MAPK kinases.  相似文献   

14.
Since protection of cells from stress-induced apoptosis by the heat shock protein Hsp72 involves suppression of stress kinase JNK, we suggested that Hsp72-mediated JNK inhibition might also be critical for myocardial protection from ischemia/reperfusion. Transient energy deprivation of H9c2 myogenic cells, used as an in vitro model of myocardial ischemia, led to cell death that had morphological features of apoptosis and necrosis and was independent of caspases. Surprisingly, this unusual type of cell death was regulated by JNK and ERK kinases. In fact, specific inhibition of JNK increased cell survival; specific inhibition of ERKs enhanced deleterious consequences of energy deprivation, whereas inhibition of p38 kinase had no effect. Hsp72 suppressed activation of JNK and did not increase ERK activity, suggesting that inhibition of JNK is the important component of Hsp72-mediated protection. Upon transient energy deprivation, activation of JNK proceeds via two distinct pathways, stimulation of JNK phosphorylation by a protein kinase SEK1 and inhibition of JNK dephosphorylation. Remarkably, in cells exposed to transient energy deprivation, Hsp72 enhanced the rate of JNK dephosphorylation but did not affect SEK1 activity. Therefore, it appears that Hsp72 specifically down-regulates JNK by accelerating its dephosphorylation, which reduces the susceptibility of cardiac cells to simulated ischemia/reperfusion.  相似文献   

15.
The major components of the mitogen-activated protein kinase (MAPK) cascades are MAPK, MAPK kinase (MAPKK), and MAPKK kinase (MAPKKK). Recent rapid progress in identifying members of MAPK cascades suggests that a number of such signaling pathways exist in cells. To date, however, how the specificity and efficiency of the MAPK cascades is maintained is poorly understood. Here, we have identified a novel mouse protein, termed Jun N-terminal protein kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1), by a yeast two-hybrid screen, using JNK3 MAPK as the bait. Of the mammalian MAPKs tested (JNK1, JNK2, JNK3, ERK2, and p38alpha), JSAP1 preferentially coprecipitated with the JNKs in cotransfected COS-7 cells. JNK3 showed a higher binding affinity for JSAP1, compared with JNK1 and JNK2. In similar cotransfection studies, JSAP1 also interacted with SEK1 MAPKK and MEKK1 MAPKKK, which are involved in the JNK cascades. The regions of JSAP1 that bound JNK, SEK1, and MEKK1 were distinct from one another. JNK and MEKK1 also bound JSAP1 in vitro, suggesting that these interactions are direct. In contrast, only the activated form of SEK1 associated with JSAP1 in cotransfected COS-7 cells. The unstimulated SEK1 bound to MEKK1; thus, SEK1 might indirectly associate with JSAP1 through MEKK1. Although JSAP1 coprecipitated with MEK1 MAPKK and Raf-1 MAPKKK, and not MKK6 or MKK7 MAPKK, in cotransfected COS-7 cells, MEK1 and Raf-1 do not interfere with the binding of SEK1 and MEKK1 to JSAP1, respectively. Overexpression of full-length JSAP1 in COS-7 cells led to a considerable enhancement of JNK3 activation, and modest enhancement of JNK1 and JNK2 activation, by the MEKK1-SEK1 pathway. Deletion of the JNK- or MEKK1-binding regions resulted in a significant reduction in the enhancement of the JNK3 activation in COS-7 cells. These results suggest that JSAP1 functions as a scaffold protein in the JNK3 cascade. We also discuss a scaffolding role for JSAP1 in the JNK1 and JNK2 cascades.  相似文献   

16.
Mitogen-activated protein kinase (MAPK) signaling was examined in malignant melanoma cells exposed to hypoxia. Here we demonstrate that hypoxia induced a strong activation of the c-Jun NH2-terminal kinase (JNK), also termed stress-activated protein kinase (SAPK), in the melanoma cell line 530 in vitro. Other members of the MAPK family, e.g., extracellular signal-regulated kinase and p38, remained unaffected by the hypoxic stimulus. Activated JNK/SAPK could also be observed in the vicinity of hypoxic tumor areas in melanoma metastases as detected by immunohistochemistry. Functional analysis of JNK/SAPK activation in the melanoma cell line 530 revealed that activation of JNK/SAPK is involved in hypoxia-mediated tumor cell apoptosis. Both a dominant negative mutant of JNK/SAPK (SAPKbeta K-->R) and a dominant negative mutant of the immediate upstream activator of JNK/SAPK, SEK1 (SEK1 K-->R), inhibited hypoxia-induced apoptosis in transient transfection studies. In contrast, overexpression of the wild-type kinases had a slight proapoptotic effect. Inhibition of extracellular signal-regulated kinase and p38 pathways by the chemical inhibitors PD98058 and SB203580, respectively, had no effect on hypoxiainduced apoptosis. Under normoxic conditions, no influence on apoptosis regulation was observed after inhibition of all three MAPK pathways. In contrast to recent findings, JNK/SAPK activation did not correlate with Fas or Fas ligand (FasL) expression, suggesting that the Fas/FasL system is not involved in hypoxia-induced apoptosis in melanoma cells. Taken together, our data demonstrate that hypoxia-induced JNK/SAPK activation appears to play a critical role in apoptosis regulation of melanoma cells in vitro and in vivo, independent of the Fas/FasL system.  相似文献   

17.
HPK1, a hematopoietic protein kinase activating the SAPK/JNK pathway.   总被引:11,自引:1,他引:10       下载免费PDF全文
In mammalian cells, a specific stress-activated protein kinase (SAPK/JNK) pathway is activated in response to inflammatory cytokines, injury from heat, chemotherapeutic drugs and UV or ionizing radiation. The mechanisms that link these stimuli to activation of the SAPK/JNK pathway in different tissues remain to be identified. We have developed and applied a PCR-based subtraction strategy to identify novel genes that are differentially expressed at specific developmental points in hematopoiesis. We show that one such gene, hematopoietic progenitor kinase 1 (hpk1), encodes a serine/threonine kinase sharing similarity with the kinase domain of Ste20. HPK1 specifically activates the SAPK/JNK pathway after transfection into COS1 cells, but does not stimulate the p38/RK or mitogen-activated ERK signaling pathways. Activation of SAPK requires a functional HPK1 kinase domain and HPK1 signals via the SH3-containing mixed lineage kinase MLK-3 and the known SAPK activator SEK1. HPK1 therefore provides an example of a cell type-specific input into the SAPK/JNK pathway. The developmental specificity of its expression suggests a potential role in hematopoietic lineage decisions and growth regulation.  相似文献   

18.
Oxidative stress activates various signal transduction pathways, including Jun N-terminal kinase (JNK) and its substrates, that induce apoptosis. We reported here the role of angiopoietin-1 (Ang1), which is a prosurvival factor in endothelial cells, during endothelial cell damage induced by oxidative stress. Hydrogen peroxide (H2O2) increased apoptosis of endothelial cells through JNK activation, whereas Ang1 inhibited H2O2-induced apoptosis and concomitant JNK phosphorylation. The inhibition of H2O2-induced JNK phosphorylation was reversed by inhibitors of phosphatidylinositol (PI) 3-kinase and dominant-negative Akt, and constitutively active-Akt attenuated JNK phosphorylation without Ang1. These data suggested that Ang1-dependent Akt phosphorylation through PI 3-kinase leads to the inhibition of JNK phosphorylation. H2O2-induced phosphorylation of SAPK/Erk kinase (SEK1) at Thr261, which is an upstream regulator of JNK, was also attenuated by Ang1-dependent activation of the PI 3-kinase/Akt pathway. In addition, Ang1 induced SEK1 phosphorylation at Ser80, suggesting the existence of an additional signal transduction pathway through which Ang1 attenuates JNK phosphorylation. These results demonstrated that Ang1 attenuates H2O2-induced SEK1/JNK phosphorylation through the PI 3-kinase/Akt pathway and inhibits the apoptosis of endothelial cells to oxidative stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号