首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The apicomplexan parasite, Theileria annulata, dedifferentiates and induces continuous division of infected bovine myeloid cells. Re-expression of differentiation markers and a loss of proliferation occur upon treatment with buparvaquone, implying that parasite factors actively maintain the altered status of the infected cell. The factors that induce this unique transformation event have not been identified. However, parasite polypeptides (TashAT family) that are located in the infected leucocyte nucleus have been postulated to function as modulators of host cell phenotype. In this study differential RNA display and proteomic analysis were used to identify altered mRNA and polypeptide expression profiles in a bovine macrophage cell line (BoMac) transfected with TashAT2. One of the genes identified by differential display was found to encode an ubiquitin-like protease (bUBP43) belonging to the UBP43 family. The bUBP43 gene and the gene encoding its ubiquitin-like substrate, bISG15, were expressed at a low level in T. annulata-infected cells. However, infected cells were refractory to induction of elevated bISG15 expression by lipopolysaccharide or type 1 interferons while TashAT2-transfected cells showed no induction when treated with camptothecin. Modulation of the ISGylation system may be of relevance to the establishment of the transformed infected host cell, as ISGylation is associated with resistance to intracellular infection by pathogens, stimulation of the immune response and terminal differentiation of leukaemic cells.  相似文献   

2.
Theileria annulata is an intracellular protozoan parasite that infects B cells and macrophages of ruminants. Macrophages infected with T. annulata are de-differentiated and display tumour cell properties and a metastatic behaviour. How parasitized cells adapt their morphology, motility and invasive behaviour has not yet been addressed in detail. In this study, I investigated the regulation of host cell actin dynamics in T. annulata-transformed macrophages and how this affects host cell morphology and motility. T. annulata was found to promote the formation of filamentous-actin-rich podosome-type adhesions (PTAs) and lamellipodia, and to establish a polarized morphology of the infected cell. Characteristic for parasite-dependent host cell polarization is that infected cells display a single, persistent lamellipodium. Src kinases--in particular Hck--are required for the polar extension of this lamellipodium. Hck does so by promoting the clustered assembly of PTAs and accumulation of proteins of the Ezrin, Radixin, Moesin (ERM) family in lamellipodia. Polar accumulation of PTAs and ERM proteins correlates with focal matrix degradation underneath lamellipodia. These findings suggest that T. annulata equips its host cell with properties to adhere and invade. These properties are likely to promote the motile behaviour required for dissemination of infected cells in vivo.  相似文献   

3.
4.
The apicomplexan parasite Theileria annulata is the only intracellular eukaryote that is known to induce the proliferation of mammalian cells. However, as the parasite undergoes stage differentiation, host cell proliferation is inhibited, and the leukocyte is eventually destroyed. We have isolated a parasite gene (SuAT1) encoding an AT hook DNA binding polypeptide that has a predicted signal peptide, PEST motifs, nuclear localization signals, and domains which indicate interaction with regulatory components of the higher eukaryotic cell cycle. The polypeptide is localized to the nuclei of macroschizont-infected cells and was detected at significant levels in cells that were undergoing parasite stage differentiation. Transfection of an uninfected transformed bovine macrophage cell line, BoMac, demonstrated that SuAT1 can modulate cellular morphology and alter the expression pattern of a cytoskeletal polypeptide in a manner similar to that found during the infection of leukocytes by the parasite. Our findings indicate that Theileria parasite molecules that are transported to the leukocyte nucleus have the potential to modulate the phenotype of infected cells.  相似文献   

5.
The apicomplexan parasites Theileria annulata and Theileria parva cause severe lymphoproliferative disorders in cattle. Disease pathogenesis is linked to the ability of the parasite to transform the infected host cell (leukocyte) and induce uncontrolled proliferation. It is known that transformation involves parasite dependent perturbation of leukocyte signal transduction pathways that regulate apoptosis, division and gene expression, and there is evidence for the translocation of Theileria DNA binding proteins to the host cell nucleus. However, the parasite factors responsible for the inhibition of host cell apoptosis, or induction of host cell proliferation are unknown. The recent derivation of the complete genome sequence for both T. annulata and T. parva has provided a wealth of information that can be searched to identify molecules with the potential to subvert host cell regulatory pathways. This review summarizes current knowledge of the mechanisms used by Theileria parasites to transform the host cell, and highlights recent work that has mined the Theileria genomes to identify candidate manipulators of host cell phenotype.  相似文献   

6.
SYNOPSIS. The intralymphocytic stages of Theileria parva, T. lawrencei and T. annulata have been cultivated for several months in tissue cultures of bovine lymphocytes associated with baby hamster kidney cells. In established cultures the theilerial particles multiplied at about the same rate as the host cells, the percentage of infected cells and the mean number of parasite particles per cell remaining nearly constant.
During mitotic division of the host cell the theilerial body becomes closely associated with the spindle fibres and is pulled apart and distributed to both daughter cells in late anaphase. The single theilerial particles (chromatin) within the theilerial body divide by binary fission; their division is not synchronous with that of the host cell.  相似文献   

7.
Carey KL  Jongco AM  Kim K  Ward GE 《Eukaryotic cell》2004,3(5):1320-1330
Many intracellular pathogens are separated from the cytosol of their host cells by a vacuole membrane. This membrane serves as a critical interface between the pathogen and the host cell, across which nutrients are imported, wastes are excreted, and communication between the two cells takes place. Very little is known about the vacuole membrane proteins mediating these processes in any host-pathogen interaction. During a screen for monoclonal antibodies against novel surface or secreted proteins of Toxoplasma gondii, we identified ROP4, a previously uncharacterized member of the ROP2 family of proteins. We report here on the sequence, posttranslational processing, and subcellular localization of ROP4, a type I transmembrane protein. Mature, processed ROP4 is localized to the rhoptries, secretory organelles at the apical end of the parasite, and is secreted from the parasite during host cell invasion. Released ROP4 associates with the vacuole membrane and becomes phosphorylated in the infected cell. Similar results are seen with ROP2. Further analysis of ROP4 showed it to be phosphorylated on multiple sites, a subset of which result from the action of either host cell protein kinase(s) or parasite kinase(s) activated by host cell factors. The localization and posttranslational modification of ROP4 and other members of the ROP2 family of proteins within the infected cell make them well situated to play important roles in vacuole membrane function.  相似文献   

8.
9.
Although Leishmania parasites have been shown to modulate their host cell''s responses to multiple stimuli, there is limited evidence that parasite molecules are released into infected cells. In this study, we present an implementation of the change mediated antigen technology (CMAT) to identify parasite molecules that are preferentially expressed in infected cells. Sera from mice immunized with cell lysates prepared from L. donovani or L. pifanoi-infected macrophages were adsorbed with lysates of axenically grown amastigotes of L. donovani or L. pifanoi, respectively, as well as uninfected macrophages. The sera were then used to screen inducible parasite expression libraries constructed with genomic DNA. Eleven clones from the L. pifanoi and the L. donovani screen were selected to evaluate the characteristics of the molecules identified by this approach. The CMAT screen identified genes whose homologs encode molecules with unknown function as well as genes that had previously been shown to be preferentially expressed in the amastigote form of the parasite. In addition a variant of Tryparedoxin peroxidase that is preferentially expressed within infected cells was identified. Antisera that were then raised to recombinant products of the clones were used to validate that the endogenous molecules are preferentially expressed in infected cells. Evaluation of the distribution of the endogenous molecules in infected cells showed that some of these molecules are secreted into parasitophorous vacuoles (PVs) and that they then traffic out of PVs in vesicles with distinct morphologies. This study is a proof of concept study that the CMAT approach can be applied to identify putative Leishmania parasite effectors molecules that are preferentially expressed in infected cells. In addition we provide evidence that Leishmania molecules traffic out of the PV into the host cell cytosol and nucleus.  相似文献   

10.
The protozoan parasite Cryptosporidium parvum causes persistent diarrhea and malnutrition in children and the diarrhea-wasting syndrome in AIDS. No therapy exists for eliminating the parasite in the absence of a healthy immune response. Although it had been reported that infection of intestinal cell lines with C. parvum leads to host cell death, the mechanisms of cytolysis have not been characterized. We show here that infection with C. parvum leads to typical apoptotic nuclear condensation and DNA fragmentation in host cells. Both nuclear condensation and DNA fragmentation are inhibited by a caspase inhibitor, showing that caspases are involved in this type of apoptosis. Finally, blocking apoptosis with the caspase inhibitor increases the percentage of infected cells, suggesting that parasites may use apoptosis to exit from the infected cell or that the infected cells may eliminate the parasite through apoptosis. These results suggest that apoptosis could be involved in the pathogenesis of C. parvum infections in vivo, and raise the possibility that therapeutic interference with host cell death could alter the course of the pathology in vivo.  相似文献   

11.
12.
Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFκB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and largely irreversible manner.  相似文献   

13.
14.
Tachyzoites of Toxoplasma gondii were located inside the nucleus of both skeletal muscle cells infected in vitro and peritoneal exudate cells collected from infected mouse in vivo. Ultrastructural analysis demonstrated that T. gondii invades the nucleus of host cells by the parasite apical region and with constriction of its body. We noted that the rhoptry, a secretory organelle of the parasite that is involved in the host cell invasion mechanism, was empty in the intranuclear T. gondii. The parasites were found in the nuclear matrix without evidence of the vacuolar membrane. Frequently, new parasites invaded host cell nucleus, which was already infected. The significance of this nuclear invasion could reflect an alternative route of T. gondii for its transitory survival or an escape mechanism from the host immune response during the in vivo infection (or both).  相似文献   

15.
Flow cytometry and monoclonal antibodies to bovine leucocyte surface antigens were used to identify the types of host cells that the sporozoites of Theileria annulata infect in cattle, to determine whether virulent schizont-infected cell lines (lines) differed phenotypically from avirulent lines, and to establish whether attenuation in vitro was accompanied by the preferential growth of particular host cell types. The surface antigens of four pairs of T. annulata (Ta) (Hisar) lines derived ex vivo and in vitro, including the virulent ex vivo-derived Ta Hisar S45 line, were consistent with a myeloid origin for all lines, irrespective of their derivation. The profiles of lines derived from cattle inoculated with a virulent line showed that the schizonts liberated from inoculated cells had transferred to myeloid cells. A number of other lines infected with different stocks of T. annulata expressed myeloid markers; a single line expressed CD21, a B cell marker. During prolonged in vitro culture, the parasites in the ex vivo (virulent)- and in vitro (avirulent)-derived Ta Hisar S45 myeloid lines became clonal, as defined by glucose phosphate isomerase (GPI) polymorphism, and the virulent line became attenuated. The two lines retained phenotypic profiles indicative of a myeloid origin but coexpressed some lymphoid antigens (CD2, CD4, CD8), although not CD3. Cloned schizont-infected lines, representing the three parasite GPI isotypes which constituted the virulent line, expressed similar patterns of myeloid and lymphoid markers to the virulent parent line. Some schizont-infected clones failed to establish as lines during the early weeks of culture because the cells died as the parasites differentiated into merozoites at 37 degrees C, the temperature at which schizont-infected cells normally grow exponentially. These results provided no evidence that prolonged culture induces preferential growth or loss of particular host cell types. However, a number of the alterations in host cell surface antigens induced by prolonged culture were shown to be linked to permanent changes in the parasite genome.  相似文献   

16.
17.
The intracellular stages of apicomplexan parasites are known to extensively modify their host cells to ensure their own survival. Recently, considerable progress has been made in understanding the molecular details of these parasite-dependent effects for Plasmodium-, Toxoplasma- and Theileria-infected cells. We have begun to understand how Plasmodium liver stage parasites protect their host hepatocytes from apoptosis during parasite development and how they induce an ordered cell death at the end of the liver stage. Toxoplasma parasites are also known to regulate host cell survival pathways and it has been convincingly demonstrated that they block host cell major histocompatibility complex (MHC)-dependent antigen presentation of parasite epitopes to avoid cell-mediated immune responses. Theileria parasites are the masters of host cell modulation because their presence immortalises the infected cell. It is now accepted that multiple pathways are activated to induce Theileria-dependent host cell transformation. Although it is now known that similar host cell pathways are affected by the different parasites, the outcome for the infected cell varies considerably. Improved imaging techniques and new methods to control expression of parasite and host cell proteins will help us to analyse the molecular details of parasite-dependent host cell modifications.  相似文献   

18.
Parasitic plants that infect crops are devastating to agriculture throughout the world. These parasites develop a unique inducible organ called the haustorium that connects the vascular systems of the parasite and host to establish a flow of water and nutrients. Upon contact with the host, the haustorial epidermal cells at the interface with the host differentiate into specific cells called intrusive cells that grow endophytically toward the host vasculature. Following this, some of the intrusive cells re-differentiate to form a xylem bridge (XB) that connects the vasculatures of the parasite and host. Despite the prominent role of intrusive cells in host infection, the molecular mechanisms mediating parasitism in the intrusive cells remain poorly understood. In this study, we investigated differential gene expression in the intrusive cells of the facultative parasite Phtheirospermum japonicum in the family Orobanchaceae by RNA-sequencing of laser-microdissected haustoria. We then used promoter analyses to identify genes that are specifically induced in intrusive cells, and promoter fusions with genes encoding fluorescent proteins to develop intrusive cell-specific markers. Four of the identified intrusive cell-specific genes encode subtilisin-like serine proteases (SBTs), whose biological functions in parasitic plants are unknown. Expression of SBT inhibitors in intrusive cells inhibited both intrusive cell and XB development and reduced auxin response levels adjacent to the area of XB development. Therefore, we propose that subtilase activity plays an important role in haustorium development in P. japonicum.

Subtilases specifically expressed in intrusive cells regulate auxin-mediated host–parasite connections in the parasitic plant Phtheirospermum japonicum.  相似文献   

19.
20.
The intracellular, protozoan Theileria species parasites are the only eukaryotes known to transform another eukaryotic cell. One consequence of this parasite-dependent transformation is the acquisition of motile and invasive properties of parasitized cells in vitro and their metastatic dissemination in the animal, which causes East Coast Fever (T. parva) or Tropical Theileriosis (T. annulata). These motile and invasive properties of infected host cells are enabled by parasite-dependent, poorly understood F-actin dynamics that control host cell membrane protrusions. Herein, we dissected functional and structural alterations that cause acquired motility and invasiveness of T. annulata-infected cells, to understand the molecular basis driving cell dissemination in Tropical Theileriosis. We found that chronic induction of TNFα by the parasite contributes to motility and invasiveness of parasitized host cells. We show that TNFα does so by specifically targeting expression and function of the host proto-oncogenic ser/thr kinase MAP4K4. Blocking either TNFα secretion or MAP4K4 expression dampens the formation of polar, F-actin-rich invasion structures and impairs cell motility in 3D. We identified the F-actin binding ERM family proteins as MAP4K4 downstream effectors in this process because TNFα-induced ERM activation and cell invasiveness are sensitive to MAP4K4 depletion. MAP4K4 expression in infected cells is induced by TNFα-JNK signalling and maintained by the inhibition of translational repression, whereby both effects are parasite dependent. Thus, parasite-induced TNFα promotes invasive motility of infected cells through the activation of MAP4K4, an evolutionary conserved kinase that controls cytoskeleton dynamics and cell motility. Hence, MAP4K4 couples inflammatory signaling to morphodynamic processes and cell motility, a process exploited by the intracellular Theileria parasite to increase its host cell''s dissemination capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号