首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic mechanism of the lactose transport system of Streptococcus thermophilus was studied in membrane vesicles fused with cytochrome c oxidase containing liposomes and in proteoliposomes in which cytochrome c oxidase was coreconstituted with the lactose transport protein. Selective manipulation of the components of the proton (and sodium) motive force indicated that both a membrane potential and a pH gradient could drive transport. The galactoside/proton stoichiometry was close to unity. Experiments which discriminate between the effects of internal pH and delta pH as driving force on galactoside/proton symport showed that the carrier is highly activated at alkaline internal pH values, which biases the transport system kinetically toward the pH component of the proton motive force. Galactoside efflux increased with increasing pH with a pKa of about 8, whereas galactoside exchange (and counterflow) exhibited a pH optimum around 7 with pKa values of 6 and 8, respectively. Imposition of delta pH (interior alkaline) retarded the rate of efflux at any pH value tested, whereas the rate of exchange was stimulated by an imposed delta pH at pH 5.8, not affected at pH 7.0, and inhibited at pH 8.0 and 9.0. The results have been evaluated in terms of random and ordered association/dissociation of galactoside and proton on the inner surface of the membrane. Imposition of delta psi (interior negative) decreased the rate of efflux but had no effect on the rate of exchange, indicating that the unloaded transport protein carries a net negative charge and that during exchange and counterflow the carrier recycles in the protonated form.  相似文献   

2.
1. Strains of Escherichia coli K12 were made that are unable to assimilate glucose by the phosphotransferase system, since they lack the glucose-specific components specified by the genes ptsG and ptsM. 2. Derivative organisms lacking the methyl galactoside or galactose-specific transport system were examined for their ability to transport galactose, d-fucose, methyl beta-D-galactoside, glucose, 2-deoxy-D-glucose and methyl alpha-D-glucoside. 3. Galactose, glucose and to a lesser extent fucose are substrates for both transport systems. 4. 2-Deoxyglucose is transported on the galactose-specific but not the methyl galactoside system. 5. The ability of sugars to elicit anaerobic proton transport is associated with the galactose-specific, but not with the methyl galactoside transport activity. Hence a chemiosmotic mechanism of energization is likely to apply to the former but not to the latter. Alternatively the methyl galactoside system may be switched off under certain conditions, which would indicate a novel regulatory mechanism. 6. Details of the procedure for the derivation of strains may be obtained from the authors, and have been deposited as Supplementary Publication SUP 50074 (8 pages at the) British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1977), 161,1.  相似文献   

3.
The effects of competing alternative substrates on the rate of uptake by galactoside/proton symport were investigated. These experiments produced a decrease in apparent maximum velocity with increased alternative-substrate concentration that cannot be accounted for by a simple ordered mechanism. This, together with non-linearities in the variation of the apparent kinetic constants with alternative-substrate concentration, can be accounted for by a random mechanism for galactoside and proton binding.  相似文献   

4.
The lactose carrier, a galactoside:H+ symporter in Escherichia coli, has been purified from cytoplasmic membranes by pre-extraction of the membranes with 5-sulfosalicylate, solubilization in dodecyl-O-beta-D-maltoside, Ecteola-column chromatography, and removal of residual impurities by anti-impurity antibodies. Subsequently, the purified carrier was reincorporated into E. coli phospholipid vesicles. Purification was monitored by tracer N-[3H]ethylmaleimide-labeled carrier and by binding of the substrate p-nitrophenyl-alpha-D-galactopyranoside. All purified carrier molecules were active in substrate binding and the purified protein was at least 95% pure by several criteria. Substrate binding to the purified carrier in detergent micelles and in reconstituted proteoliposomes yielded a stoichiometry close to one molecule substrate bound per polypeptide chain. Large unilamellar proteoliposomes (1-5-micron diameter) were prepared from initially small reconstituted vesicles by freeze-thaw cycles and low-speed centrifugation. These proteoliposomes catalyzed facilitated diffusion and active transport in response to artificially imposed electrochemical proton gradients (delta mu H+) or one of its components (delta psi or delta pH). Comparison of the steady-state level of galactoside accumulation and the nominal value of the driving gradients yielded cotransport stoichiometries up to 0.7 proton/galactoside, suggesting that the carrier protein is the only component required for active galactoside transport. The half-saturation constants for active uptake of lactose (KT = 200 microM) or beta-D-galactosyl-1-thio-beta-D-galactoside (KT = 50-80 microM) by the purified carrier were found to be similar to be similar to those measured in cells or cytoplasmic membrane vesicles. The maximum rate for active transport expressed as a turnover number was similar in proteoliposomes and cytoplasmic membrane vesicles (kcat = 3-4 s-1 for lactose) but considerably smaller than in cells (kcat = 40-60 s-1). Possible reasons for this discrepancy are discussed.  相似文献   

5.
The kinetics of galactoside-proton symport catalysed by a wild-type strain and one carrying a mutation, previously reported to cause uncoupling of the symport reaction, have been examined. The mutation does not affect the stoichiometry during the initial period of uptake, when the internal concentration of galactoside is low, but it does result in much greater competition from the galactoside as it is accumulated. Simple methods for the analysis of the uptake progress curves have been developed and used to estimate the initial rate of uptake and affinity for internal galactoside. The maximum rate of uptake is decreased by a factor of 2 at most whereas the affinity for internal galactoside is increased up to 50-fold by the mutation. The pH-dependence of the galactoside efflux reaction is changed in a manner which suggests that the defect is in the interaction between proton-binding and galactoside-binding sites rather than in the structure of either site.  相似文献   

6.
A model is presented for the lactose-proton co-transporter of E. coli. Either proton translocation inwards or galactoside translocation outwards brings about the exposure of galactoside binding sites externally. This alternation in the exposure of the galactoside binding site to either side of the membrane is viewed as the fundamental event in coupled uptake, rather than affinity changes for galactoside.The transporter is proposed to function as a dimer, exhibiting two forms corresponding to the “cis” and the “trans” orientation of the two galactosyl binding sites. A galactoside or a proton gradient brings about conversion of the sites from the “trans” to the “cis” configuration. The two forms can be experimentally differentiated by the accessibility of non-transportable substrate analogs to the galactosyl binding sites.  相似文献   

7.
The kinetic mechanism of galactoside/H+ cotransport in Escherichia coli   总被引:3,自引:0,他引:3  
To determine the kinetic mechanism of galactoside active transport by the lactose/H+ cotransporter of Escherichia coli, galactoside binding and transport are studied in the absence and presence of delta mu H+. For several reasons, the substrate beta-D-galactosyl-1-thi-beta-D-galactoside (GalSGal) is preferred over lactose. In the absence of delta mu H+, the cotransporter retains high affinity for GalSGal, and the affinity is the same on both sides of the membrane. At physiological pH, the cotransporter is protonated and the dissociation constant for H+ may be 50 pM. The cosubstrates bind in a random fashion. An isomerization of the cotransporter corresponding to reorientation of the binding sites is rate-determining. When delta mu H+ is imposed, two reorientations become faster, and one becomes slower. The affinity of the cotransporter for GalSGal on both sides of the membrane is unchanged. The inability of the cotransporter to bring the accumulation of galactoside into equilibrium with delta mu H+ at high galactoside concentrations can be explained without postulating uncoupled fluxes of galactoside or H+ across the membrane (leaks). The formation of the ternary carrier-H+-galactoside complex on the cytoplasmic side of the membrane with increasing internal levels of sugar and the rapidity of galactoside exchange inhibit net influx of galactoside and favor exchange. Net transport is slow at high galactoside levels. Thus, the cotransporter can self-regulate transport without uncoupling H+ and galactoside fluxes. Because the values of delta mu H+ during binding and transport studies were measured, these results can be subjected to a quantitative analysis.  相似文献   

8.
Recent progress in the analysis of mutants of the Escherichia coli lactose carrier function is reviewed, with special emphasis on the structural basis for energy barriers which prevent 'forbidden' conformational changes. Mutations which break down the barriers to forbidden isomerizations involving the binary carrier:sugar (CS) and carrier:proton (CH) complexes have been obtained in several laboratories. These mutants allow uncoupled transport of H+ or galactoside in the lactose carrier which normally couples cation and sugar movement in a 1:1 stoichiometry. These uncoupled mutants appear to be associated with changes in both sugar and cation recognition, suggesting that the physical interactions forming the basis for co-substrate recognition and uncoupling are not independently variable. By postulating that translocation involves transformation of the stable intermediate of the co-transport cycle to unstable transition state conformations of the carrier, it is possible to consider the consequences of mutagenesis in terms of transition state theory. Consistent with several experimental observations, the analysis predicts in each mutant the occurrence of more than one abnormality in the transport cycle (such as changes in sugar recognition, cation recognition or the coupling reaction). We have called the general phenomenon a 'mutational double-effect' because any mutation which alters the Gibbs free energy change of one reaction in the transport cycle must affect the free energy change of at least one other reaction in this cycle.  相似文献   

9.
Alkali Cation/Sucrose Co-transport in the Root Sink of Sugar Beet   总被引:12,自引:11,他引:1       下载免费PDF全文
The mechanism of sucrose transport into the vacuole of root parenchyma cells of sugar beet was investigated using discs of intact tissue. Active sucrose uptake was evident only at the tonoplast. Sucrose caused a transient 8.3 millivolts depolarization of the membrane potential, suggesting an ion co-transport mechanism. Sucrose also stimulated net proton efflux. Active (net) uptake of sucrose was strongly affected by factors that influence the alkali cation and proton gradients across biological membranes. Alkali cations (Na+ and K+) at 95 millimolar activity stimulated active uptake of sucrose 2.1- to 4-fold, whereas membrane-permeating anions inhibited active sucrose uptake. The pH optima for uptake was between 6.5 and 7.0, pH values slightly higher than those of the vacuole. The ionophores valinomycin, gramicidin D, and carbonyl cyanide m-chlorophenylhydrazone at 10 micromolar concentrations strongly inhibited active sucrose uptake. These data are consistent with the hypothesis that an alkali cation influx/proton efflux reaction is coupled to the active uptake of sucrose into the vacuole of parenchyma cells in the root sink of sugar beets.  相似文献   

10.
The lactose permease, which catalyzes galactoside-proton symport into Escherichia coli, has been purified and reconstituted in active form into artificial lipid vesicles. The roles of many detergents and phospholipids in solubilization and stabilization of the activity of the permease have been examined with a view to its eventual crystallization. Initial rates of uptake into reconstituted proteoliposomes determined by rapid mixing techniques proved that the activity of the permease can be comparable to that observed in the intact cell, while the best values for uptake rates obtained with conventional techniques were comparable to those reported for vesicles. The activity of the purified protein has been monitored over time periods of hours to weeks. It is shown that, under the best current conditions, the permease retains full activity for 1 to 2 weeks. Although this is still marginal for its crystallization, future improvements can now be assayed by rather stringent criteria. The mechanism of galactoside transport into reconstituted proteoliposome has been investigated by examining the effects of pH on influx into the vesicles. It is shown that the observed effects are entirely consistent with the predictions of a simple model of proton symport. The apparent increase in rate of uptake that is observed in the presence of a pH gradient is not so much due to an acceleration by a component of the protonmotive force as to the relaxation of inhibition by a product (internal protons) of the symport reaction.  相似文献   

11.
S Hallén  T Nilsson 《Biochemistry》1992,31(47):11853-11859
The pH dependence of proton uptake and electron transfers during the reaction between fully reduced cytochrome c oxidase and oxygen has been studied using the flow-flash method. Proton uptake was monitored using different pH indicators. We have also investigated the effect of D2O on the electron-transfer reactions. Proton uptake was biphasic throughout the pH range studied (6.3-9.3), and the decrease of the observed rate constants at increasing pH could be described by titration curves with pKa values of 8-8.5. Of the four phases resolved in the redox reaction, the rate constants for the first two were independent of pH, whereas that of the third decreased at increasing pH with a pKa of 7.9. All phases except the first were slower in D2O than in H2O. The values obtained for kH/kD were 1.0 for the first phase, 1.4 for the second and third phases, and 2.5 for the fourth phase. We suggest from these results that the fast phase of proton uptake is initiated by the second phase of the redox reaction and that this step includes a partially rate-limiting internal proton transfer. The third and fourth phases of the redox reaction are suggested to be rate limited by proton uptake from the medium. The pH dependencies of the proton uptake reactions are consistent with the participation of a titrable group in the protein in proton transfer from the medium to the oxygen-binding site.  相似文献   

12.
Fast measurement of galactoside transport by lactose permease   总被引:2,自引:0,他引:2  
Lactose permease of Escherichia coli was reconstituted into vesicles of dimyristoylphosphatidylcholine, and the rate of galactoside counterflow was measured in the millisecond time range. The turnover number and the half-saturation constant for transport agree with the values known for cells. This result demonstrates that lactose permease is the sole protein necessary for galactoside transport. Furthermore, lactose permease seems not to require a high level of negatively charged lipids or a certain degree of unsaturation of the lipid hydrocarbon chains. However, the lipids must be in the fluid state, because the transport rate drastically decreases below the lipid ordered fluid phase transition.  相似文献   

13.
The Escherichia coli K12 strain X71-54 carries the lac YUN allele, coding for a lactose/H+ carrier defective in the accumulation of a number of galactosides [Wilson, Kusch & Kashket (1970) Biochem. Biophys. Res. Commun. 40, 1409-1414]. Previous studies proposed that the lower accumulation in the mutant be due to a faulty coupling of H+ and galactoside fluxes via the carrier. Immunochemical characterization of the carriers in membranes from mutant and parent strains with an antibody directed against the C-terminal decapeptide of the wild-type carrier leads to the conclusion that the mutant carrier is similar to the wild-type in terms of apparent Mr, C-terminal sequence, and level of incorporation into the membrane. The pH-dependence of galactoside transport was compared in the mutant and the parent. At pH 8.0-9.0, mutant and parent behave similarly with respect to the accumulation of beta-D-galactosyl 1-thio-beta-D-galactoside and to the ability to grow on the carrier substrate melibiose. At pH 6.0, both the maximal velocity for active transport and the level of accumulation of beta-D-galactosyl-1-thio-beta-D-galactoside are lower in the mutant. The mutant also is unable to grow on melibiose at pH 5.5. However, at pH 6.0 and low galactoside concentrations, the symport stoichiometry is 0.90 H+ per galactoside in the mutant as compared with 1.07 in the parent. These observations suggest that symport is normal in the mutant and that the lower rate of transport in the mutant is responsible for the phenotype. At higher galactoside concentrations, accumulation is determined not only thermodynamically but also kinetically, contrary to a simple interpretation of the chemiosmotic theory. Therefore lower rates of active transport can mimic the effect of uncoupling H+ and galactoside symport. Examination of countertransport in poisoned cells at pH 6.0 reveals that the rate constants for the reorientation of the loaded and unloaded carrier are altered in the mutant. The reorientation of the unloaded carrier is slower in the mutant. However, the reorientation of the galactoside-H+-carrier complex is slower for substrates like melibiose, but faster for substrates like lactose. These findings suggest that lactose-like and melibiose-like substrates interact with the carrier in slightly different ways.  相似文献   

14.
The transport of ATP out of mitochondria and uptake of ADP and Pi into the matrix are coupled to the uptake of one proton (Klingenberg, M., and Rottenberg, H. (1977) Eur. J. Biochem. 73, 125--130). According to the chemiosmotic hypothesis of oxidative phosphorylation this coupling of nucleotide and Pi transport to proton transport implies that the P/O ratio for the synthesis and transport of ATP to the external medium is less than the P/O ratio for the synthesis of ATP inside mitochondria. A survey of previous determinations of the P/O ratio of intact mitochondria showed little convincing evidence in support of the currently accepted values of 3 with NADH-linked substrates and 2 with succinate. We have measured P/O ratios in rat liver mitochondria by the ADP pulse method and by 32 Pi esterification, measuring oxygen uptake with an oxygen electrode, and find values close to 2 with beta-hydroxybutyrate as substrate and 1.3 with succinate as substrate in the presence of rotenone to inhibit NADH oxidation. These values were largely independent of pH, temperature, Mg2+ ion concentration, Pi concentration, ADP pulse size, or amount of mitochondria used. We suggest that these are the true values of the P/O ratio for ATP synthesis and transport by mitochondria, and that previously reported higher values resulted from errors in the determination of oxygen uptake and the use of substrates which lead to ATP synthesis by succinate thiokinase.  相似文献   

15.
The Km, Vmax, and Ki of the entry reaction were determined for three substrates of the beta-methyl galactoside transport system: D-galactose, D-glycerol-beta-D-galactoside, and beta-methyl-D-galactoside. Although the data for D-galactose and D-glycerol-beta-D-galactoside followed simple Michaelis-Menten kinetics, the results for beta-methyl-D-galactoside deviated from Michaelis-Menten kinetics in that the Ki for beta-methyl-D-galactoside inhibition of both of the other two substrates was 10-fold greater than the Km for beta-methyl-D-galactoside entry. Furthermore, two partial mgl- strains retain 56% of the parental level of the beta-methyl-D-galactoside entry reaction, but only 12% of the parental level of transport of the other two substrates. The exit reaction of beta-methyl-D-galactoside was shown to be first order. It was stimulated sixfold when the cells were provided with an energy source. This stimulation required adenosine 5'-triphosphate or a related compound. The exit reaction was not altered by mutations in any of the three cistrons which inactivate the beta-methyl-D-galactoside entry reaction, was not increased by growth in the presence of inducers of the entry reaction, and was not repressed by growth on glucose. The striking differences between the entry and exit reactions suggest that they either use different carriers or that none of the three cistrons which are currently known to code for components of the beta-methyl galactoside transport system code for its membrane carrier.  相似文献   

16.
The lactose transport protein (LacS) of Streptococcus thermophilus catalyzes the uptake of lactose in an exchange reaction with intracellularly formed galactose. The interactions between the substrate and the cytoplasmic and extracellular binding site of LacS have been characterized by assaying binding and transport of a range of sugars in proteoliposomes, in which the purified protein was reconstituted with a unidirectional orientation. Specificity for galactoside binding is given by the spatial configuration of the C-2, C-3, C-4, and C-6 hydroxyl groups of the galactose moiety. Except for a C-4 methoxy substitution, replacement of the hydroxyl groups for bulkier groups is not tolerated at these positions. Large hydrophobic or hydrophilic substitutions on the galactose C-1 alpha or beta position did not impair transport. In fact, the hydrophobic groups increased the binding affinity but decreased transport rates compared with galactose. Binding and transport characteristics of deoxygalactosides from either side of the membrane showed that the cytoplasmic and extracellular binding site interact differently with galactose. Compared with galactose, the IC(50) values for 2-deoxy- and 6-deoxygalactose at the cytoplasmic binding site were increased 150- and 20-fold, respectively, whereas they were the same at the extracellular binding site. From these and other experiments, we conclude that the binding sites and translocation pathway of LacS are spacious along the C-1 to C-4 axis of the galactose moiety and are restricted along the C-2 to C-6 axis. The differences in affinity at the cytoplasmic and extracellular binding site ensure that the transport via LacS is highly asymmetrical for the two opposing directions of translocation.  相似文献   

17.
J.Michael Gould  S. Izawa 《BBA》1974,333(3):509-524
1. By using dibromothymoquinone as the electron acceptor, it is possible to isolate functionally that segment of the chloroplast electron transport chain which includes only Photosystem II and only one of the two energy conservation sites coupled to the complete chain (Coupling Site II, observed P/e2 = 0.3–0.4). A light-dependent, reversible proton translocation reaction is associated with the electron transport pathway: H2O → Photosystem II → dibromothymoquinone. We have studied the characteristics of this proton uptake reaction and its relationship to the electron transport and ATP formation associated with Coupling Site II.

2. The initial phase of H+ uptake, analyzed by a flash-yield technique, exhibits linear kinetics (0–3 s) with no sign of transient phenomena such as the very rapid initial uptake (“pH gush”) encountered in the overall Hill reaction with methylviologen. Thus the initial rate of H+ uptake obtained by the flash-yield method is in good agreement with the initial rate estimated from a pH change tracing obtained under continuous illumination.

3. Dibromothymoquinone reduction, observed as O2 evolution by a similar flash-yield technique, is also linear for at least the first 5 s, the rate of O2 evolution agreeing well with the steady-state rate observed under continuous illumination.

4. Such measurements of the initial rates of O2 evolution and H+ uptake yield an H+/e ratio close to 0.5 for the Photosystem II partial reaction regardless of pH from 6 to 8. (Parallel experiments for the methylviologen Hill reaction yield an H+/e ratio of 1.7 at pH 7.6.)

5. When dibromothymoquinone is being reduced, concurrent phosphorylation (or arsenylation) markedly lowers the extent of H+ uptake (by 40–60%). These data, unlike earlier data obtained using the overall Hill reaction, lend themselves to an unequivocal interpretation since phosphorylation does not alter the rate of electron transport in the Photosystem II partial reaction. ADP, Pi and hexokinase, when added individually, have no effect on proton uptake in this system.

6. The involvement of a proton uptake reaction with an H+/e ratio of 0.5 in the Photosystem II partial reaction H2O → Photosystem II → dibromothymoquinone strongly suggests that at least 50% of the protons produced by the oxidation of water are released to the inside of the thylakoid, thereby leading to an internal acidification. It is pointed out that the observed efficiencies for ATP formation (P/e2) and proton uptake (H+/e) associated with Coupling Site II can be most easily explained by the chemiosmotic hypothesis of energy coupling.  相似文献   


18.
Yocum CF 《Plant physiology》1977,60(4):597-601
A number of uncouplers and energy transfer inhibitors suppress photosystem II cyclic photophosphorylation catalyzed by either a proton/electron or electron donor. Valinomycin and 2,4-dinitrophenol also inhibit photosystem II cyclic photophosphorylation, but these compounds appear to act as electron transport inhibitors rather than as uncouplers. Only when valinomycin, KCl, and 2,4-dinitrophenol were added simultaneously to phosphorylation reaction mixtures was substantial uncoupling observed. Photosystem II noncyclic and cyclic electron transport reactions generate positive absorbance changes at 518 nm. Uncoupling and energy transfer inhibition diminished the magnitude of these absorbance changes. Photosystem II cyclic electron transport catalyzed by either p-phenylenediamine or N,N,N′,N′-tetramethyl-p-phenylenediamine stimulated proton uptake in KCN-Hg-NH2OH-inhibited spinach (Spinacia oleracea L.) chloroplasts. Illumination with 640 nm light produced an extent of proton uptake approximately 3-fold greater than did 700 nm illumination, indicating that photosystem II-catalyzed electron transport was responsible for proton uptake. Electron transport inhibitors, uncouplers, and energy transfer inhibitors produced inhibitions of photosystem II-dependent proton uptake consistent with the effects of these compounds on ATP synthesis by the photosystem II cycle. These results are interpreted as indicating that endogenous proton-translocating components of the thylakoid membrane participate in coupling of ATP synthesis to photosystem II cyclic electron transport.  相似文献   

19.
The sensitivity of a nitroxide spin label to the polarity of its environment has been used to estimate the hydrophobic barrier of the proton channel of the transmembrane proton pump bacteriorhodopsin. By means of site-specific mutagenesis, single cysteine residues were introduced at 10 positions located at the protein surface, in the protein interior, and along the proton pathway. After reaction with a methanethiosulfonate spin label, the principle values of the hyperfine tensor A and the g-tensor were determined from electron paramagnetic resonance spectra measured at 170 K. The shape of the hydrophobic barrier of the proton channel is characterized in terms of a polarity index, DeltaA, determined from the variation of the hyperfine coupling constant Azz. The maximum of the hydrophobic barrier is found to be close to the retinal chromophore in the proton uptake pathway. The effect of the asymmetric distribution of charged and polar residues in the proton release and uptake pathways is clearly reflected in the behavior of the hydrophobic barrier. The presence of azide reduces the barrier height of both the cytoplasmic and extracellular channels. This finding supports the view of azide and other weakly acidic anions as catalysts for the formation of hydrogen-bonded networks in proton pathways of proteins.  相似文献   

20.
The acidophilic and thermophilic bacterium, Bacillus acidocaldarius maintains a cytoplasmic pH between 5.85 and 6.31 over a range of external pH from 2.0 to 4.5. Consistently, the pH optimum of beta-galactosidase, as assayed in cell extracts, is between pH 6.0 and 6.5. An electrical potential (delta-psi), interior positive, is also maintained across the membrane. A delta-psi of approximately 34 mV was calculated from determinations of thiocyanate uptake by cells at pH 3.5. Addition of the proton conductor carbonyl cyanide m-chlorophenylhydrazone increased the delta-psi. Treatment of cells with valinomycin (in the absence of external potassium ions) or high concentrations of thiocyanate, to abolish the delta psi, resulted in collapse of the transmembrane proton gradient (delta pH). Active transport of methylthio-beta, D-galactoside occurred optimally at pH 3.5. Transport of the galactoside was inhibited by various compounds which could dissipate the transmembrane delta pH and by respiratory inhibitors. A decrease in the delta pH and an increase in the delta psi occurred upon addition of methylthio-beta, D-galactoside to cells of B. acidocaldarius. Thus the transport of this solute appears to involve an electrogenic symport with protons. The transport system is most active at 50 degrees C and shows little activity at 25 degrees C, although the delta pH is the same at the two temperatures. Gramicidin inhibits methylthio-beta, D-galactoside transport equally effectively at 50 degrees C and 25 degrees C, while nigericin inhibits only after a lag at 25 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号