共查询到20条相似文献,搜索用时 0 毫秒
1.
J R Lancaster 《Journal of theoretical biology》1978,75(1):35-50
A model is presented for the lactose-proton co-transporter of E. coli. Either proton translocation inwards or galactoside translocation outwards brings about the exposure of galactoside binding sites externally. This alternation in the exposure of the galactoside binding site to either side of the membrane is viewed as the fundamental event in coupled uptake, rather than affinity changes for galactoside.The transporter is proposed to function as a dimer, exhibiting two forms corresponding to the “cis” and the “trans” orientation of the two galactosyl binding sites. A galactoside or a proton gradient brings about conversion of the sites from the “trans” to the “cis” configuration. The two forms can be experimentally differentiated by the accessibility of non-transportable substrate analogs to the galactosyl binding sites. 相似文献
2.
Alternative-substrate inhibition and the kinetic mechanism of the beta-galactoside/proton symport of Escherichia coli.
下载免费PDF全文

The effects of competing alternative substrates on the rate of uptake by galactoside/proton symport were investigated. These experiments produced a decrease in apparent maximum velocity with increased alternative-substrate concentration that cannot be accounted for by a simple ordered mechanism. This, together with non-linearities in the variation of the apparent kinetic constants with alternative-substrate concentration, can be accounted for by a random mechanism for galactoside and proton binding. 相似文献
3.
4.
The kinetics of the mating process in Escherichia coli 总被引:13,自引:0,他引:13
HAYES W 《Journal of general microbiology》1957,16(1):97-119
5.
Direct gene transfer is achieved in Escherichia coli by use of square wave electric pulsing. As observed by video monitoring, the field pulse causes bacteria to orientate parallel to the field lines. Rapid kinetic turbidity changes indicate that this process happens quickly. In these circumstances, and in pulsing conditions prone to inducing transformation, only caps are affected by the field. Considerable cytoplasmic ion leakage occurs during the pulse, affecting the interfacial ionic concentration. The pulsing-buffer osmolarity has to be close to that used with protoplasts. Contact between the plasmid and the bacteria can be very short before the pulse but must be present during the pulse. The plasmid remains accessible to externally added DNases up to 5 days after the pulse, suggesting that the transfer step is slow. Electric-field-mediated transfer can be described in two steps: the anchoring process during the pulse, followed by the crossing of the membrane. 相似文献
6.
7.
8.
The effects of pH on proton sugar symport activity of the lactose permease purified from Escherichia coli 总被引:2,自引:0,他引:2
The lactose permease, which catalyzes galactoside-proton symport into Escherichia coli, has been purified and reconstituted in active form into artificial lipid vesicles. The roles of many detergents and phospholipids in solubilization and stabilization of the activity of the permease have been examined with a view to its eventual crystallization. Initial rates of uptake into reconstituted proteoliposomes determined by rapid mixing techniques proved that the activity of the permease can be comparable to that observed in the intact cell, while the best values for uptake rates obtained with conventional techniques were comparable to those reported for vesicles. The activity of the purified protein has been monitored over time periods of hours to weeks. It is shown that, under the best current conditions, the permease retains full activity for 1 to 2 weeks. Although this is still marginal for its crystallization, future improvements can now be assayed by rather stringent criteria. The mechanism of galactoside transport into reconstituted proteoliposome has been investigated by examining the effects of pH on influx into the vesicles. It is shown that the observed effects are entirely consistent with the predictions of a simple model of proton symport. The apparent increase in rate of uptake that is observed in the presence of a pH gradient is not so much due to an acceleration by a component of the protonmotive force as to the relaxation of inhibition by a product (internal protons) of the symport reaction. 相似文献
9.
The cloning and DNA sequence of the gene xylE for xylose-proton symport in Escherichia coli K12 总被引:6,自引:0,他引:6
The gene xylE, coding for xylose-proton symport in Escherichia coli, was cloned and its DNA sequence determined. The cloning strategy utilized lambda placMu insertions and exploited the proximity of xylE to malB. A 2.8-kilobase HincII fragment of cloned DNA restored [14C]xylose transport and xylose-proton symport activities to a xylose transport-negative strain. The xylE gene was identified as a 1473-base pair open reading frame, located 373 base pairs downstream of malG, encoding a hydrophobic protein of Mr 53,607. The amino acid sequence of XylE bore little resemblance to the lactose-proton LacY symporter or melibiose-sodium MelB symporter, but a high degree of homology was found with the arabinose-proton AraE symporter of E. coli and glucose transport proteins of mammals. Structural analyses and comparisons suggest that 12 membrane-spanning segments may occur in the XylE protein. 相似文献
10.
Colpoda steinii was grown in two-stage continuous cultures with Escherichia coli as prey species. The concentration of prey and the ciliate mean cell volume, dry weight, and number per milliliter were determined at known growth rates. Steady states were reached in the second-stage continuous cultures at all growth rates. Although changes occurred in mean cell size of the ciliates and in the number per milliliter at various growth rates, the yield of protozoan biomass per unit of prey consumed was constant at all growth rates. The data were compared with several equations proposed to describe the kinetics of protozoan growth as a function of prey density. 相似文献
11.
Colpoda steinii was grown in two-stage continuous cultures with Escherichia coli as prey species. The concentration of prey and the ciliate mean cell volume, dry weight, and number per milliliter were determined at known growth rates. Steady states were reached in the second-stage continuous cultures at all growth rates. Although changes occurred in mean cell size of the ciliates and in the number per milliliter at various growth rates, the yield of protozoan biomass per unit of prey consumed was constant at all growth rates. The data were compared with several equations proposed to describe the kinetics of protozoan growth as a function of prey density. 相似文献
12.
Galactoside-proton symport in a lacYUN mutant of Escherichia coli investigated by analysis of transport progress curves.
下载免费PDF全文

M G Page 《The Biochemical journal》1987,242(2):539-550
The kinetics of galactoside-proton symport catalysed by a wild-type strain and one carrying a mutation, previously reported to cause uncoupling of the symport reaction, have been examined. The mutation does not affect the stoichiometry during the initial period of uptake, when the internal concentration of galactoside is low, but it does result in much greater competition from the galactoside as it is accumulated. Simple methods for the analysis of the uptake progress curves have been developed and used to estimate the initial rate of uptake and affinity for internal galactoside. The maximum rate of uptake is decreased by a factor of 2 at most whereas the affinity for internal galactoside is increased up to 50-fold by the mutation. The pH-dependence of the galactoside efflux reaction is changed in a manner which suggests that the defect is in the interaction between proton-binding and galactoside-binding sites rather than in the structure of either site. 相似文献
13.
M Schwartz 《European journal of biochemistry》1971,21(2):191-198
14.
Defective cation-coupling mutants of Escherichia coli Na+/proline symport carrier. Characterization and localization of mutations 总被引:4,自引:0,他引:4
A major proline carrier in Escherichia coli encoded by the putP gene mediates proline/Na+ or Li+ symport. Proline carrier mutants with altered cation specificity were obtained by mutagenesis with nitrous acid in vitro of a plasmid carrying the wild-type putP gene. Two mutant strains harboring plasmid pMOP4135 and pMOP4141 could transport proline efficiently only in the presence of an increased concentration of sodium ion. Mutations of these plasmids, putP4135 and putP4141, caused reduction of affinity for Na+ of proline transport and binding, without remarkable change in the affinity for proline or in production of the carriers. Consistent with the lower affinity of the putP4141 carrier for Na+, the mutant carrier was supersensitive to N-ethylmaleimide inhibition. The pH dependence of proline binding was also changed in these mutant carriers. The lesions of putP4135 and putP4141 were located in the N-terminal part of the putP gene (ClaI-PvuII fragment) by in vitro recombination and subsequent examination of the phenotype of the transformants. DNA sequencing of these fragments revealed one base alteration of G to A at nucleotides 299 and 656 in pMOP4141 and pMOP4135, respectively, which corresponded to amino acid changes from Gly22 to glutamic acid and Cys141 to tyrosine, respectively. 相似文献
15.
S. E. Halford 《The Biochemical journal》1971,125(1):319-327
1. The hydrolysis of 2,4-dinitrophenyl phosphate by Escherichia coli alkaline phosphatase at pH5.5 was studied by the stopped-flow technique. The rate of production of 2,4-dinitrophenol was measured both in reactions with substrate in excess of enzyme and in single turnovers with excess of enzyme over substrate. It was found that the step that determined the rate of the transient phase of this reaction was an isomerization of the enzyme occurring before substrate binding. 2. No difference was observed between the reaction after mixing a pre-equilibrium mixture of alkaline phosphatase and inorganic phosphate, with 2,4-dinitrophenyl phosphate at pH5.5 in the stopped-flow apparatus, and the control reaction in which inorganic phosphate was pre-equilibrated with the substrate. Since dephosphorylation is the rate-limiting step of the complete turnover at pH5.5, this observation suggests that alkaline phosphatase can bind two different ligands simultaneously, one at each of the active sites on the dimeric enzyme, even though only one site is catalytically active at any given time. 3. Kinetic methods are outlined for the distinction between two pathways of substrate binding, which include an isomerization either of the free enzyme or of the enzyme-substrate complex. 相似文献
16.
Characterization of the proton/glutamate symport protein of Bacillus subtilis and its functional expression in Escherichia coli.
下载免费PDF全文

Transport of acidic amino acids in Bacillus subtilis is an electrogenic process in which L-glutamate or L-aspartate is symported with at least two protons. This is shown by studies of transport in membrane vesicles in which a proton motive force is generated by oxidation of ascorbate-phenazine methosulfate or by artificial ion gradients. An inwards-directed sodium gradient had no (stimulatory) effect on proton motive force-driven L-glutamate uptake. The transporter is specific for L-glutamate and L-aspartate. L-Glutamate transport is inhibited by beta-hydroxyaspartate and cysteic acid but not by alpha-methyl-glutamate. The gene encoding the L-glutamate transport protein of B. subtilis (gltPBsu) was cloned by complementation of Escherichia coli JC5412 for growth on glutamate as the sole source of carbon, energy, and nitrogen, and its nucleotide sequence was determined. Putative promoter, terminator, and ribosome binding site sequences were found in the flanking regions. UUG is most likely the start codon. gltPBsu encodes a polypeptide of 414 amino acid residues and is homologous to several proteins that transport glutamate and/or structurally related compounds such as aspartate, fumarate, malate, and succinate. Both sodium- and proton-coupled transporters belong to this family of dicarboxylate transporters. Hydropathy profiling and multiple alignment of the family of carboxylate transporters suggest that each of the proteins spans the cytoplasmic membrane 12 times with both the amino and carboxy termini on the inside. 相似文献
17.
18.
19.
20.
The stoichiometric coupling mechanism of the membrane potential (delta psi) in the reaction of H+/proline symport was investigated kinetically, using cytoplasmic membrane vesicles of the proline carrier-overproducing strain of Escherichia coli MinS/ pLC4 -45. When a delta psi was imposed across the cytoplasmic membrane by respiration, the Michaelis constant of transport (Kt) was lowered to about 1 microM, which was 2 orders of magnitude smaller than that of passive influx and efflux, and the maximum velocity (Vmax) was concomitantly enhanced as an exponential function of delta psi. Thermodynamically, the carrier translocated proline with a stoichiometry of 2 mol of protons versus 1 mol of substrate when driven by a delta psi at pH 8.0. Data on the delta psi dependence of Vmax of proline transport could be explained quantitatively by the Geck-Heinz hypothesis (Geck, P., and Heinz, E. (1976) Biochim, Biophys. Acta 443, 49-63). A symmetrical model of the 2H+/proline symport via formation of a carrier/H+/substrate (CH+H+S) intermediate is proposed. In this model, the effect of delta psi on the Kt was resolved as stimulation of formation of a transport intermediate, whereas the effect of delta psi on the Vmax was explained by enhancement of translocation of loaded carriers between the two sides of the membrane. 相似文献