首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In neurons, Presenilin 1(PS1)/γ-secretase is located at the synapses, bound to N-cadherin. We have previously reported that N-cadherin-mediated cell–cell contact promotes cell-surface expression of PS1/γ-secretase. We postulated that N-cadherin-mediated trafficking of PS1 might impact synaptic PS1-amyloid precursor protein interactions and Aβ generation. In the present report, we evaluate the effect of N-cadherin-based contacts on Aβ production. We demonstrate that stable expression of N-cadherin in Chinese hamster ovary cells, expressing the Swedish mutant of human amyloid precursor protein leads to enhanced secretion of Aβ in the medium. Moreover, N-cadherin expression decreased Aβ42/40 ratio. The effect of N-cadherin expression on Aβ production was accompanied by the enhanced accessibility of PS1/γ-secretase to amyloid precursor protein as well as a conformational change of PS1, as demonstrated by the fluorescence lifetime imaging technique. These results indicate that N-cadherin-mediated synaptic adhesion may modulate Aβ secretion as well as the Aβ42/40 ratio via PS1/N-cadherin interactions.  相似文献   

2.
Abstract: Alzheimer's disease is characterized neuropathologically by the presence of neuritic and amyloid plaques, vascular amyloid, and neurofibrillary tangles in specific brain areas. The main constituent of amyloid deposits is amyloid β protein, a 40–42 amino acid proteolytic product of the amyloid β-precursor protein. In our search for proteases that can generate the N-terminus of amyloid β protein (β-secretases), we discovered a thiol-dependent metalloprotease that was identified, by peptide sequencing, as metalloendopeptidase EC 3.4.24.15. In vitro, the metalloprotease cleaves the methionine-aspartic acid bond in a 10 amino acid synthetic peptide, indicating that it could generate the N-terminus of amyloid β protein, and generates amyloidogenic fragments from full-length recombinant amyloid β-precursor protein. Mouse monoclonal antibodies produced against a unique synthetic peptide from the metalloprotease labeled various monkey tissues as detected by western blots and immunohistochemistry. Unexpectedly, two monoclonal antibodies, IVD6 and IIIF3, immunolabeled strongly intracellular neurofibrillary tangles, neurites of senile plaques, and neuropil threads, but not "ghost" tangles or amyloid in sections taken from Alzheimer's disease brain. This finding provides further evidence for the metalloprotease's relevance to Alzheimer's disease pathology, although the connection between tangle staining and the formation of amyloid β protein remains to be elucidated.  相似文献   

3.
Dactylysin (EC 3.5.24.60) is a metalloendopeptidase first isolated from the skin granular gland secretions of Xenopus laevis. This peptidase hydrolyzes bonds on the amino-terminus of singlets and between doublets of hydrophobic amino acids and was considered to play a role in the in vivo inactivation of biologically active regulatory peptides. Here, we show that dactylysin has also the ability to cleave human β[1-40]-amyloid peptide and related peptides. Cleavage of the wild type β[1-40]-amyloid peptide form, and to a lesser extent Flemish and Dutch mutants, occurred predominantly at the His14-Glu15 bond. We demonstrate that frog skin exudate contains a full-length amyloid protein precursor detected by immunochemical cross-reactivity with monoclonal antibody against C-terminal human amyloid protein precursor. The possibility that dactylysin, might be involved in normal catabolism of β amyloid peptide of Xenopus laevis is discussed.  相似文献   

4.
Amyloid β protein, the major component of the senile plaques in Alzheimer's disease, is generated by secretory and endocytic processing of amyloid precursor protein. Internalized amyloid precursor protein either recycles to the plasma membrane, where α-secretase resides, or moves to acidic compartment(s) for β-secretase exposure. While the trans-Golgi network contains β-secretase activity, recent examination of the subcellular distribution of this proteinase, called BACE, has led to the suggestion that β-secretase activity might also reside at the plasma membrane and in endosomes. To examine the role of endocytic compartments in β-secretase processing of amyloid precursor protein, the wild-type and endosomal sorting mutant P-selectin cytoplasmic domains were used to control movement of amyloid precursor protein through endosomes. Amyloid precursor protein/P-selectin, which is sorted from early to late endosomes, undergoes significantly less α-secretase cleavage, and more β-secretase cleavage, than amyloid precursor protein/P-selectin768A, a mutant that recycles more efficiently to the cell surface. Our results demonstrate that endosomal sorting influences relative exposure of the amyloid precursor protein/P-selectin chimeras to α- and β-secretase activities, and suggest that, because delivery to late endocytic compartments favors β-secretase processing of amyloid precursor protein, there is likely limited β-secretase activity in early endosomes or at the cell surface. We propose that the trans-Golgi network may be involved in both secretory and endocytic generation of amyloid β protein.  相似文献   

5.
ATP-binding cassette transporter A7 (ABCA7) is expressed in the brain and, like its closest homolog ABCA1, belongs to the ABCA subfamily of full-length ABC transporters. ABCA1 promotes cellular cholesterol efflux to lipid-free apolipoprotein acceptors and also inhibits the production of neurotoxic β-amyloid (Aβ) peptides in vitro . The potential functions of ABCA7 in the brain are unknown. This study investigated the ability of ABCA7 to regulate cholesterol efflux to extracellular apolipoprotein acceptors and to modulate Aβ production. The transient expression of ABCA7 in human embryonic kidney cells significantly stimulated cholesterol efflux (fourfold) to apolipoprotein E (apoE) discoidal lipid complexes but not to lipid-free apoE or apoA-I. ABCA7 also significantly inhibited Aβ secretion from Chinese hamster ovary cells stably expressing human amyloid precursor protein (APP) or APP containing the Swedish K670M671→N670L671 mutations when compared with mock-transfected cells. Studies with fluorogenic substrates indicated that ABCA7 had no impact on α-, β-, or γ-secretase activities. Live cell imaging of Chinese hamster ovary cells expressing APP-GFP indicated an apparent retention of APP in a perinuclear location in ABCA7 co-transfected cells. These studies indicate that ABCA7 has the capacity to stimulate cellular cholesterol efflux to apoE discs and regulate APP processing resulting in an inhibition of Aβ production.  相似文献   

6.
The formation of β-amyloid peptide (Aβ) is initiated from cleavage of amyloid precursor protein (APP) by a family of protease, α-, β-, and γ-secretase. Sub W, a substrate peptide, consists of 10 amino acids, which are adjacent to the β-cleavage site of wild-type APP, and Sub M is Swedish mutant with double mutations on the left side of the β-cleavage site of APP. Sub W is a normal product of the metabolism of APP in the secretary pathway. Sub M is known to increase the efficiency of β-secretase activity, resulting in a more specific binding model compared to Sub W. Three-dimensional structures of Sub W and Sub M were studied by CD and NMR spectroscopy in water solution. On the basis of these structures, interaction models of β-secretase and substrate peptides were determined by molecular dynamics simulation. Four hydrogen bonds and one water-mediated interaction were formed in the docking models. In particular, the hydrogen bonding network of Sub M-BACE formed spread over the broad region of the active site of β-secretase (P5-P3′), and the side chain of P2-Asn formed a hydrogen bond specifically with the side chain of Arg235. These are more favorable to the cleavage of Sub M by β-secretase than Sub W. The two substrate peptides showed different tendency to bind to β-secretase and this information may useful for drug development to treat and prevent Alzheimer’s disease.  相似文献   

7.
BACE1 is a type I transmembrane aspartyl protease that cleaves amyloid precursor protein at the β-secretase site to initiate the release of β-amyloid peptide. As a secretase, BACE1 also cleaves additional membrane-bound molecules by exerting various cellular functions. In this study, we showed that BACE1 can effectively shed the membrane-anchored signaling molecule Jagged 1 (Jag1). We also mapped the cleavage sites of Jag1 by ADAM10 and ADAM17. Although Jag1 shares a high degree of homology with Jag2 in the ectodomain region, BACE1 fails to cleave Jag2 effectively, indicating a selective cleavage of Jag1. Abolished cleavage of Jag1 in BACE1-null mice leads to enhanced astrogenesis and, concomitantly, reduced neurogenesis. This characterization provides biochemical evidence that the Jag1-Notch pathway is under the control of BACE1 activity.  相似文献   

8.
Abstract: Cleavage after Met596 of the β-amyloid precursor protein to generate the N-terminus of β-protein indicates the activity of a protease having chymotrypsin-like specificity. A chymotrypsin-like protease is further implicated in Alzheimer's disease by the increased synthesis of the protease inhibitor α1-antichymotrypsin in pathologically affected brain regions and by the presence in the amyloid deposits of inactivated forms of α1-antichymotrypsin (indicating irreversible binding to a target chymotrypsin-like protease). In the present report, we have purified from rat brain a chymotrypsin-like protease that (a) binds with high affinity to human α1-antichymotrypsin, (b) proteolytically generates a β-protein-containing C-terminal fragment from full-length recombinant human β-amyloid precursor protein, and (c) selectively cleaves methoxysuccinyl-Glu-Val-Lys-Met-p-nitroanilide (a substrate modeling the protease recognition domain for the β-protein N-terminal cleavage site). Amino acid sequences of tryptic fragments of the purified rat brain chymotrypsin-like protease indicate an identity with rat mast cell protease I. Moreover, the ontogeny and compartmentalization of rat brain chymotrypsin-like protease are consistent with those of connective tissue-type mast cells in the meningeal and intracortical perivasculature. Because these areas in human brain form extensive β-amyloid deposits in Alzheimer's disease, Down's syndrome, and hereditary cerebral hemorrhage with amyloidosis of Dutch origin, the present findings suggest that a brain mast cell chymotrypsin-like protease may participate in generating perivascular β-protein, which ultimately aggregates into β-amyloid deposits.  相似文献   

9.
The β-amyloid precursor protein has been the focus of much attention from the Alzheimer's disease community for the past decade and a half. The β-amyloid precursor protein holds a pivotal position in Alzheimer's disease research because it is the precursor to the amyloid β-protein which many believe plays a central role in Alzheimer's disease pathogenesis. It was also the first gene in which mutations associated with inherited Alzheimer's disease were found. Although the molecular details of the generation of amyloid β-protein from β-amyloid precursor protein are being unraveled, the actual physiological functions of β-amyloid precursor protein are far from clear. This situation is changing as accumulating new evidence suggests that the C-terminal cytosolic tail of β-amyloid precursor protein may have multiple biological activities, ranging from axonal transport to nuclear signaling. This article reviews the current state of knowledge about the biological functions of β-amyloid precursor protein .  相似文献   

10.
We describe an assay system for the identification of site-specific proteases. The assay is based on a protein substrate that is immobilized on ceramic beads. After incubation with cell homogenates, the beads are washed and digested with endoproteinase Lys-C to liberate a defined set of peptides. The peptide fragments are identified by mass spectrometry. The assay was used to screen for beta-secretase, the protease that cleaves amyloid precursor protein (APP) at the beta-site. Cathepsin D was identified as the enzyme responsible for beta-secretase-like activity in two cell lines. Subsequent analysis of the related aspartic protease, cathepsin E, revealed almost identical cleavage specificity. Both enzymes are efficient in cleaving Swedish mutant APP at the beta-site but show almost no reactivity with wild-type APP. Treatment of cell lines with pepstatin inhibited the production of amyloid peptide (Abeta) when they were transfected with a construct bearing the Swedish APP mutant. However, when the cells were transfected with wild-type APP, the generation of Abeta was increased. This suggests that more than one enzyme is capable of generating Abeta in vivo and that an aspartic protease is involved in the processing of Swedish mutant APP.  相似文献   

11.
Abstract: A major histopathological hallmark in Alzheimer's disease consists of the extracellular deposition of the amyloid β-peptide (Aβ) that is proteolytically derived from the β-amyloid precursor protein (βAPP). An alternative, nonamyloidogenic cleavage, elicited by a protease called α-secretase, occurs inside the Aβ sequence and gives rise to APPα, a major secreted C-terminal-truncated form of βAPP. Here, we demonstrate that human embryonic kidney 293 (HK293) cells contain a chymotryptic-like activity that can be ascribed to the proteasome and that selective inhibitors of this enzyme reduce the phorbol 12,13-dibutyrate-sensitive APPα secretion by these cells. Furthermore, we establish that a specific proteasome blocker, lactacystin, also induces increased secretion of Aβ peptide in stably transfected HK293 cells overexpressing wild-type βAPP751. Altogether, this study represents the first identification of a proteolytic activity, namely, the proteasome, contributing likely through yet unknown intracellular relays, to the α-secretase pathway in human cells.  相似文献   

12.
Among harmful conditions damaging the blood–brain barrier, cerebral stroke and reperfusion injuries were proposed as contributing factors to Alzheimer's disease etiology. Indeed it was reported that ischemic conditions promote β-amyloid peptide production in brain endothelial cells, although implicated mechanisms are yet not fully understood.Oxidative injury related to ischemia affects membrane-lipids profile by altering their biochemical properties and structural dynamics, which are also believed to play significant role in the amyloid precursor protein processing, suggesting a link between alterations in lipid membrane composition and β-amyloid peptide production enhancement.Using brain microvascular endothelial cells, here we demonstrate how oxygen and glucose deprivation followed by normal conditions restoration, mimicking ischemic environment, increases cell cholesterol amount (+20%), reduces membrane fluidity and results in strong activation (+40%) of β-secretase 1 enzymatic activity. Moreover, we observed an increase of amyloid precursor protein and β-secretase 1 protein levels with altered localization in non-discrete (Triton X-100 soluble) membrane domains, leading to an enhanced production of amyloid precursor protein β-carboxyl-terminal fragment. Therefore, lipid alterations induced by oxygen and glucose deprivation enhance β-secretase 1 activity, favor its proximity to amyloid precursor protein and may concur to increased amyloidogenic cleavage. The latter, represents a detrimental event that may contribute to β-amyloid homeostasis impairment in the brain and to Alzheimer's disease-related BBB dysfunctions.  相似文献   

13.
14.
Abstract: P19 is a C3H mouse-derived line of multipotent embryonic carcinoma cells that differentiate into neural cells. P19 cell clones overexpressing the three major forms of β-amyloid precursor protein from their cDNA constructs were established. Unlike a previous study in which P19-derived neurons had a limited α-secretase activity, all of these clones produced significant amounts of secreted β-amyloid precursor protein. When treated with retinoic acid, these transformed lines differentiated into neurons and survived better than did nontransformed parental P19 cells. Furthermore, P19-derived neurons survived better in medium conditioned by the transformed P19 line, and survival was reduced by immunoabsorption with an antibody to β-amyloid precursor protein. These results suggest neurotrophic effects of secreted β-amyloid precursor protein and contrast with a previous report in which overexpression of a full-length cDNA for β-amyloid precursor protein led to degeneration of P19-derived neurons. Western blot analysis suggested that this difference might result from different levels of expression of putative neurotoxic C-terminal fragments of β-amyloid precursor protein; moreover, P19-derived neurons differ from P19 stem cells in the processing of these C-terminal fragments.  相似文献   

15.

Background  

Several γ-secretase inhibitors (GSI) are in clinical trials for the treatment of Alzheimer's disease (AD). This enzyme mediates the proteolytic cleavage of amyloid precursor protein (APP) to generate amyloid β protein, Aβ, the pathogenic protein in AD. The γ-secretase also cleaves Notch to generate Notch Intracellular domain (NICD), the signaling molecule that is implicated in tumorigenesis.  相似文献   

16.
Beta amyloid peptide is generated from amyloid precursor protein (APP) by proteolytic cleavage of β- and γ-secretases, and plays a critical role in the pathogenesis of Alzheimer’s disease. Since γ-secretase cleaves several proteins including APP and Notch in a number of cell types, it is important to understand the conditions determining γ-secretase substrate specificity. In the present study, inhibition of Rac1 attenuated γ-secretase activity for APP, resulting in decreased production of the APP intracellular domain but accumulated C-terminal fragments (APP-CTF). In contrast, Rac1 inhibitor, NSC23766 increased production of the Notch1 intracellular domain but slightly decreased the ectodomain-shed form of Notch1 (NotchΔE). To elucidate the mechanism underlying these observations, we performed co-immunoprecipitation experiments to analyze the interaction between Rac1 and presenilin1 (PS1), a component of the γ-secretase complex. Inhibition of Rac1 enhanced its interaction with PS1. Under the same condition, PS1 interacted more strongly with NotchΔE than with APP-CTF. Our results suggested that PS1 determines the preferred substrate for γ-secretase between APP and Notch1, depending on the activation status of Rac1.  相似文献   

17.
γ-secretase, the endoprotease which releases the C-terminus of βA4 amyloid peptide, cleaves within the hydrophobic transmembrane domain of the amyloid precursor protein. In order to obtain a substrate for γ-secretase, a dodecapeptide which spans the cleavage site was synthesized, labelled with 125-iodine and conjugated to an agarose gel. A radiometric solid-phase assay was developed using this immobilized substrate. Peptide products were separated by reverse-phase HPLC and TLC to allow characterization of the cleavage site(s).  相似文献   

18.
BACE (β-site amyloid precursor protein cleaving enzyme, β-secretase) is a type-I membrane protein which functions as an aspartic protease in the production of β-amyloid peptide, a causative agent of Alzheimer's disease. Its cytoplasmic tail has a characteristic acidic-cluster dileucine motif recognized by the VHS domain of adaptor proteins, GGAs (Golgi-localizing, γ-adaptin ear homology domain, ARF-interacting). Here we show that BACE is colocalized with GGAs in the trans -Golgi network and peripheral structures, and phosphorylation of a serine residue in the cytoplasmic tail enhances interaction with the VHS domain of GGA1 by about threefold. The X-ray crystal structure of the complex between the GGA1-VHS domain and the BACE C-terminal peptide illustrates a similar recognition mechanism as mannose 6-phosphate receptors except that a glutamine residue closes in to fill the gap created by the shorter BACE peptide. The serine and lysine of the BACE peptide point their side chains towards the solvent. However, phosphorylation of the serine affects the lysine side chain and the peptide backbone, resulting in one additional hydrogen bond and a stronger electrostatic interaction with the VHS domain, hence the reversible increase in affinity.  相似文献   

19.
γ-Secretase inhibitors have been shown to reduce the production of β-amyloid, a component of the plaques that are found in brains of patients with Alzheimer’s disease. A novel series of heterocyclic sulfonamide γ-secretase inhibitors that reduce β-amyloid levels in cells is reported. Several examples of compounds within this series demonstrate a higher propensity to inhibit the processing of amyloid precursor protein compared to Notch, an alternative γ-secretase substrate.  相似文献   

20.
Alzheimer's disease (AD) is hypothesized to result from elevated brain levels of β-amyloid peptide (Aβ) which is the main component of plaques found in AD brains and which cause memory impairment in mice. Therefore, there has been a major focus on the development of inhibitors of the Aβ producing enzymes γ-secretase and β-site amyloid precursor protein-cleaving enzyme 1 (BACE1). In this study, we investigated the Aβ-lowering effects of the BACE1 inhibitor LY2434074 in vitro and in vivo , comparing it to the well characterized γ-secretase inhibitor LY450139. We sampled interstitial fluid Aβ from awake APPswe/PS1dE9 AD mice by in vivo Aβ microdialysis. In addition, we measured levels of endogenous brain Aβ extracted from wildtype C57BL/6 mice. In our in vitro assays both compounds showed similar Aβ-lowering effects. However, while systemic administration of LY450139 resulted in transient reduction of Aβ in both in vivo models, we were unable to show any Aβ-lowering effect by systemic administration of the BACE1 inhibitor LY2434074 despite brain exposure exceeding the in vitro IC50 value several fold. In contrast, significant reduction of 40–50% of interstitial fluid Aβ and wildtype cortical Aβ was observed when infusing LY2434074 directly into the brain by means of reverse microdialysis or by dosing the BACE1 inhibitor to p-glycoprotein (p-gp) mutant mice. The effects seen in p-gp mutant mice and subsequent data from our cell-based p-gp transport assay suggested that LY2434074 is a p-gp substrate. This may partly explain why BACE1 inhibition by LY2434074 has lower in vivo efficacy, with respect to decreased Aβ40 levels, compared with γ-secretase inhibition by LY450139.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号