首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The strong expression of recombinant proteins in bacteria affects the primary carbon and energy metabolism resulting in growth inhibition and acetate formation. By applying glucose pulses to fed-batch fermentations performed for production of a heterologous (alpha-glucosidase in Escherichia coli, we show that the induction of the recombinant gene strongly inhibits the maximum specific uptake capacities for glucose and the respiration capacity. The accumulation of glucose in the fermentation medium promotes the growth of plasmid-free cells. These inhibition effects are well described by including the kinetics of product formation into a recently published dynamic model (Lin et al. [2001] Biotechnol Bioeng 73:349-357). The new model also includes the population characteristics and gives a good fit to the measured data describing growth, production, substrate consumption, by-product formation, and respiration.  相似文献   

2.
Proteome analysis was used to compare global protein expression changes in Escherichia coli fermentation between exponential and glucose-limited fed-batch phase. Two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry were used to separate and identify 49 proteins showing >2-fold difference in expression. Proteins upregulated during exponential phase include ribonucleotide biosynthesis enzymes and ribosomal recycling factor. Proteins upregulated during fed-batch phase include those involved in high-affinity glucose uptake, transport and degradation of alternate carbon sources and TCA cycle, suggesting an enhanced role of the cycle under glucose- and energy-limited conditions. We report the upregulation of several putative proteins (ytfQ, ygiS, ynaF, yggX, yfeX), not identified in any previous study under carbon-limited conditions.  相似文献   

3.
An automated glucose feeding strategy that avoids acetate accumulation in cultivations of Escherichia coli is discussed. We have previously described how a probing technique makes it possible to detect and avoid overflow metabolism using a dissolved oxygen sensor. In this article these ideas are extended with a safety net that guarantees that aerobic conditions are maintained. The method is generally applicable, as no strain-specific information is needed and the only sensor required is a standard dissolved oxygen probe. It also gives the highest feed rate possible with respect to limitations from overflow metabolism and oxygen transfer, thus maximizing bioreactor productivity. The strategy was implemented on three different laboratory-scale platforms and fed-batch cultivations under different operating conditions were performed with three recombinant strains, E. coli K-12 UL635, E. coli BL21(DE3), and E. coli K-12 UL634. In spite of disturbances from antifoam and induction of recombinant protein production, the method reproducibly gave low concentrations of acetate and glucose. The ability to obtain favorable cultivation conditions independently of strain and operating conditions makes the presented strategy a useful tool, especially in situations where it is important to get good results on the first attempt.  相似文献   

4.
Overflow metabolism is an undesirable characteristic of aerobic cultures of Escherichia coli. It results from elevated glucose consumption rates that cause a high substrate conversion to acetate, severely affecting cell physiology and bioprocess performance. Such phenomenon typically occurs in batch cultures under high glucose concentration. Fed-batch culture, where glucose uptake rate is controlled by external addition of glucose, is the classical bioprocessing alternative to prevent overflow metabolism. Despite its wide-spread use, fed-batch mode presents drawbacks that could be overcome by simpler batch cultures at high initial glucose concentration, only if overflow metabolism is effectively prevented. In this study, an E. coli strain (VH32) lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) with a modified glucose transport system was cultured at glucose concentrations of up to 100 g/L in batch mode, while expressing the recombinant green fluorescence protein (GFP). At the highest glucose concentration tested, acetate accumulated to a maximum of 13.6 g/L for the parental strain (W3110), whereas a maximum concentration of only 2 g/L was observed for VH32. Consequently, high cell and GFP concentrations of 52 and 8.2 g/L, respectively, were achieved in VH32 cultures at 100 g/L of glucose. In contrast, maximum biomass and GFP in W3110 cultures only reached 65 and 48%, respectively, of the values attained by the engineered strain. A comparison of this culture strategy against traditional fed-batch culture of W3110 is presented. This study shows that high cell and recombinant protein concentrations are attainable in simple batch cultures by circumventing overflow metabolism through metabolic engineering. This represents a novel and valuable alternative to classical bioprocessing approaches.  相似文献   

5.
6.
Three different aerobic fed-batch processes of Escherichia coli were studied, two for the production of a recombinant protein and one process with a wild-type E. coli strain. In all three processes, an accumulation of formate could be observed in the latter part of the process. Analysis of the concentration of DNA in the medium revealed that the release of DNA coincided with the accumulation of formate. It was found that increasing concentrations of DNA correlated in almost linearly increasing concentrations of formate. Formate accumulation is caused by mixed acid fermentation, although no oxygen limitation was measured with the DO electrode. It is proposed that extracellular DNA restrained mass transfer between the bulk medium and the cell. To investigate if the DNA accumulation caused formate production, DNA was removed by continuous feeding of a DNA binding polymer to the medium. The addition of the polymer decreased the content of free DNA in the broth and the formate was reassimilated. Furthermore, additional DNA early in the process resulted in early formate accumulation.  相似文献   

7.
An astaxanthin-producing yeast Xanthophyllomyces dendrorhous ENM5 was cultivated in a liquid medium containing 50 g/L glucose as the major carbon source in stirred fermentors (1.5-L working volume) in fully aerobic conditions. Ethanol was produced during the exponential growth phase as a result of overflow metabolism or fermentative catabolism of glucose by yeast cells. After accumulating to a peak of 3.5 g/L, the ethanol was consumed by yeast cells as a carbon source when glucose in the culture was nearly exhausted. High initial glucose concentrations and ethanol accumulation in the culture had inhibitory effects on cell growth. Astaxanthin production was partially associated with cell growth. Based on these culture characteristics, we constructed a modified Monod kinetic model incorporating substrate (glucose) and product (ethanol) inhibition to describe the relationship of cell growth rate with glucose and ethanol concentrations. This kinetic model, coupled with the Luedeking-Piret equation for the astaxanthin production, gave satisfactory prediction of the biomass production, glucose consumption, ethanol formation and consumption, and astaxanthin production in batch cultures over 25-75 g/L glucose concentration ranges. The model was also applied to fed-batch cultures to predict the optimum feeding scheme (feeding glucose and corn steep liquor) for astaxanthin production, leading to a high volumetric yield (28.6 mg/L) and a high productivity (5.36 mg/L/day).  相似文献   

8.
A starvation-based dissolved oxygen (DO) transient controller was developed to supply growth-limiting substrate to high cell density fed-batch cultures of recombinant Escherichia coli. The algorithm adjusted a preexisting feed rate in proportion to the culture's oxygen demand, which was estimated from transients in the DO concentration after short periods of feed interruption. In this manner, the addition of glucose feed was precisely controlled at a rate that did not exceed the acetate production threshold, thus preventing acetate accumulation. In comparison to exponential feed algorithms commonly used in industry, the implementation of the new feeding strategy increased the final cell density from 32 to 44 g (dry cell weight).L(-1), with less than 16 mM acetate accumulated, producing an ideal culture for subsequent induction. Despite a constant starvation level and relatively low levels of acetate, experimental cultivations still tended to produce acetate towards the end of the process. The use of a simple Monod model provided an explanation as to why this may occur in high cell density cultivations and suggests how it may be overcome.  相似文献   

9.
This article describes a fully automated system for the on-line monitoring and closed-loop control of a fed-batch fermentation of recombinant Escherichia coli, and presents two case studies of its used in limiting production of unwanted byproducts such as acetic in fed-batch fermentations. The system had two components. The first components, on-line monitoring, comprised an aseptic sampling device, a microcentrifuge, and HPLC System. These instruments removed a Sample from a fermentor, spun it at high speed to separate solid and liquid components, and then automatically injected the supernatant onto an HPLC column for analysis. The second component consisted of control algorithms programmed using the LabView visual programming environment in a control computer that was linked via a remote components were linked so that results from the on-line HPLC were captured and used by the control algorithm was designed to demonstrate coarse feedback control to confirm the operability of the controller. The second case study showed how the system could be used in a more sophisticated feedings strategy providing fine control and limiting acetate concentration to a low level throughout the fermentation. (c) 1994 John Wiley & Sons, Inc.  相似文献   

10.
The effect of oxygen availability on the metabolism of Enterobacter aerogenes NCIMB 10102 was studied through batch fermentations of glucose performed increasing the specific oxygen uptake rate up to 72.7 mmol(O2) C-mol(DW) (-1) x h(-1). The final concentrations of fermentation products of this biosystem (2,3-butanediol, hydrogen, acetoin, formate, acetate, carbon dioxide, ethanol, lactate, succinate, and biomass) were utilized to check the use of simple carbon mass and reduction degree balances for the study of microbial energetics even in batch cultivations.  相似文献   

11.
The objective of this work was to evaluate the performance of a feedback glucose control strategy (the probing strategy) in production relevant bioreactors with complex and mineral media. Experimental results from fed-batch cultivations with two recombinant Escherichia coli constructs expressing two different human therapeutic proteins were used to assess the performance and limitations of the glucose probing technique. Even though the performance of the probing strategy was affected by scale and complex media, this methodology rapidly identified a glucose feed protocol similar to an experimentally derived feed regime. This methodology may serve as a powerful tool for industrial process development and in optimization of glucose feed regimes when transferring process technology from one bioreactor system to another.  相似文献   

12.
Dissolved oxygen tension and oxygen uptake rate are critical parameters in animal cell culture. However, only scarce information of such variables is available for insect cell culture. In this work, the effect of dissolved oxygen tension (DOT) and the utility of on-line oxygen uptake rate (OUR) measurements in monitoring Spodoptera frugiperda (Sf9) cultures were determined. Sf9 cells were grown at constant dissolved oxygen tensions in the range of 0 to 30%. Sf9 metabolism was affected only at DOT below 10%, as no significant differences on specific growth rate, cell concentration, amino acid consumption/production nor carbohydrates consumption rates were found at DOT between 10 and 30%. The specific growth rate and specific oxygen uptake rate followed typical Monod kinetics with respect to DOT. The calculated max and max were 0.033 h-1 and 3.82×10-10 mole cell-1h-1, respectively, and the corresponding saturation constants were 1.91 and 1.57%, respectively. In all aerated cultures, lactate was consumed only after glucose and fructose had been exhausted. The yield of lactate increased with decreasing DOT. It is proposed, that an apparent DOT in non-instrumented cultures can be inferred from the lactate yield of bioreactors as a function of DOT. Such a concept, can be a useful and important tool for determining the average dissolved oxygen tension in non-instrumented cultures. It was shown that the dynamic behavior of OUR can be correlated with monosaccharide (fructose and glucose) depletion and viable cell concentration. Accordingly, OUR can have two important applications in insect cell culture: for on-line estimation of viable cells, and as a possible feed-back control variable in automatic strategies of nutrient addition.Abbreviations DOT Dissolved oxygen tension - OUR Oxygen uptake rate - specific oxygen uptake rate - specific growth rate - Xv viable cell concentration - CL, C*, and oxygen concentrations in liquid phase, in equilibrium with gas phase, and medium molar concentration, respectively - H Henry's constant - KLa volumetric oxygen transfer coefficient - PT total pressure - oxygen partial pressure - oxygen molar fraction - i discrete element  相似文献   

13.
Although glucose is an inexpensive substrate widely used as a carbon source in Escherichia coli recombinant fermentation technology, 10-30% of the carbon supply is wasted by excreting acetate. In addition to the loss of carbon source, the excretion of a weak acid may result in increased energetic demands and hence a decreased yield. Because glucose can enter the cell via several transport systems, isogenic strains defective in one or two of these transport systems were constructed. The effects of changes in the glucose uptake capacity on the in vivo flux distribution to a desired end product (beta-galactosidase) and to acetate were studied. The lack of one of the components (IICB(Glc) protein) of the glucose-phosphoenolpyruvate phosphotransferase system (Glc-PTS) reduced the growth rate significantly. The maintenance of a low-copy plasmid in this strain resulted in further arrest of the growth rate. However, beta-galactosidase production had no effect on growth rate. This strain directed more carbon into biomass and carbon dioxide, and less into acetate. Beta-galactosidase was produced in amounts not significantly different from the wild-type strain from half the amount of glucose. An explanation for the experimental results is given, making use of published results on metabolic regulation.  相似文献   

14.
The growth and product formation of a Savinase-producing Bacillus clausii were investigated in high-cell-density fed-batch cultivations with both linear and exponential feed profiles. The highest specific productivity of Savinase was observed shortly after the end of the initial batch phase for all feed profiles applied and, in addition, there was a time-dependent decrease in specific productivity. The specific glucose uptake rate increased with time for constant specific growth rate indicating that the maintenance requirements increased with time, possibly due to a decreasing K(+) concentration. The physiological state of the cells was monitored during the cultivations using a flow cytometry assay based on the permeability of the cell membrane to propidium iodide. In the latter parts of the fed-batch cultures with a linear feed profile, a large portion of the cell population was found to have a permeable membrane, indicating a large percentage of dead cells. By assuming that only cells with a nonpermeable membrane contributed to growth and product formation, the physiological properties of this subpopulation were calculated.  相似文献   

15.
16.
A new method for real-time monitoring of the oxygen uptake rate (OUR) in bioreactors, based on dissolved oxygen (DO) measurement at two points, has been developed and tested extensively. The method has several distinct advantages over known techniques.It enables the continuous and undisturbed monitoring of OUR, which is conventionally impossible without gas analyzers. The technique does not require knowledge of k(L)a. It provides smooth, robust, and reliable signal. The monitoring scheme is applicable to both microbial and mammalian cell bioprocesses of laboratory or industrial scale. The method was successfully used in the cultivation of NSO-derived murine myeloma cell line producing monoclonal antibody. It was found that while the OUR increased with the cell density, the specific OUR decreased to approximately one-half at cell concentrations of 16 x 10(6) cells/mL, indicating gradual reduction of cell respiration activity. Apart from the laboratory scale cultivation, the method was applied to industrial scale perfusion culture, as well as to processes using other cell lines. (c) 1994 John Wiley & Sons, Inc.  相似文献   

17.
DO-transient nutrient controllers use the dissolved oxygen signal to attempt acetate threshold tracking during fed-batch cultivation of recombinant E. coli. Here we apply DO-transient control to the production of Jembrana disease virus protein in complex Super Luria medium and compare performance against a high-limit pH-stat controller. For induction at medium cell density (harvest between 31 and 32.5 g dcw L) a total productivity of 0.27 g L h was achieved as compared to 0.24 g L h with the high-limit pH-stat. For induction at high cell density (harvest at 60 g dcw L), decreased productivity (0.12 g L h) was attributed to the effect of acetate accumulation on recombinant protein formation and a concomitant lowering of the critical growth rate. Our results suggest that complex media provides a difficult environment for the application of acetate threshold tracking DO-transient control because of difficulties in re-oxidizing acetate, and apparent localized production of acetate below the production threshold (as detected by the DO-transient controller as SPOUR(crit)). Configuring the DO-transient controller to avoid aggressive threshold probing is suggested as a means to improve performance and reduce acetate accumulation in complex media.  相似文献   

18.
Insect cells have been cultured for over 30 years, but their application is still hampered by low cell densities in batch fermentations and expensive culture media. With respect to the culture method, the fed-batch culture mode is often found to give the best yields. However, optimization of the feed composition is usually a laborious task. In this report, the successful use of genetic algorithms (GAs) to optimize the growth of insect cells is described. A feed was developed from 11 different medium components, each used at a wide range of concentrations. The feed was optimized within four sets of 20 experiments. The optimized feed was tested in bioreactors and the addition scheme was further improved. The viable-cell density of HzAm1 (Helicoverpa zea) insect cells improved 550% to 19.5 x 10(6) cells/mL compared to a control fermentation in an optimized commercial medium. No accumulation of waste products was found, and none of the amino acids was depleted. Glucose was depleted, which suggests that even further improvement is possible. We show that GAs are a successful method to optimize a complex fermentation in a relatively short time frame and without the need of detailed information concerning the cellular physiology or metabolism.  相似文献   

19.
Photorhabdus luminescens, a bacterial symbiont of entomoparasitic nematodes, was cultured in a 10 L bioreactor. Cellular density and bioluminescence were recorded and volumetric oxygen transfer coefficient (kLa) and specific oxygen transfer rates were determined during the batch process. Exponential phase of the bacterium lasted for 20 h, showing a maximum specific growth rate of 0.339 h?1 in a defined medium. Bioluminescence peaked within 21h, and was maintained until the end of the batch process (48 h). The specific oxygen uptake rate (SOUR) was high during both lag and early exponential phase, and eventually reached a stable value of 0.33 mmol g?1 h?1 during stationary phase. Maintenance of 200 rpm agitation and 1.4 volume of air per volume of medium per minute (vvm) aeration, gave rise to a kLa value of 39.5 h?1. This kLa value was sufficient to meet the oxygen demand of 14.4 g L?1 (DCW) biomass. This research is particularly relevant since there are no reports available on SOURs of symbiotic bacteria or their nematode partners. The insight gained through this study will be useful during the development of a submerged monoxenic culture of Heterorhabditis bacteriophora and its symbiotic bacterium P. luminescens in bioreactors.  相似文献   

20.
High cell density fermentation studies were performed to produce the B subunit of Escherichia coli heat-labile enterotoxin (LTB) from a Vibrio cholerae culture that carries a recombinant plasmid with an ampicillin resistance gene, tac promoter, and the gene encoding LTB. Upon induction with isopropyl-beta-D-thiogalactopyranoside (IPTG) the culture secreted the protein into the extracellular milieu. Fed-batch fermentation with stepwise addition of a total of 5 mM of IPTG during the active growth phase of the organism resulted in the production of 400 mg/L of LTB in 9 h and a cell optical density (OD) of 24. The LTB was purified to homogeneity with 70% recovery from the fermentation broth and was found to be chemically and biologically identical to the native protein by N-terminal amino acid sequencing and receptor binding assay. (c) 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号