共查询到20条相似文献,搜索用时 15 毫秒
1.
The strong expression of recombinant proteins in bacteria affects the primary carbon and energy metabolism resulting in growth inhibition and acetate formation. By applying glucose pulses to fed-batch fermentations performed for production of a heterologous (alpha-glucosidase in Escherichia coli, we show that the induction of the recombinant gene strongly inhibits the maximum specific uptake capacities for glucose and the respiration capacity. The accumulation of glucose in the fermentation medium promotes the growth of plasmid-free cells. These inhibition effects are well described by including the kinetics of product formation into a recently published dynamic model (Lin et al. [2001] Biotechnol Bioeng 73:349-357). The new model also includes the population characteristics and gives a good fit to the measured data describing growth, production, substrate consumption, by-product formation, and respiration. 相似文献
2.
An automated glucose feeding strategy that avoids acetate accumulation in cultivations of Escherichia coli is discussed. We have previously described how a probing technique makes it possible to detect and avoid overflow metabolism using a dissolved oxygen sensor. In this article these ideas are extended with a safety net that guarantees that aerobic conditions are maintained. The method is generally applicable, as no strain-specific information is needed and the only sensor required is a standard dissolved oxygen probe. It also gives the highest feed rate possible with respect to limitations from overflow metabolism and oxygen transfer, thus maximizing bioreactor productivity. The strategy was implemented on three different laboratory-scale platforms and fed-batch cultivations under different operating conditions were performed with three recombinant strains, E. coli K-12 UL635, E. coli BL21(DE3), and E. coli K-12 UL634. In spite of disturbances from antifoam and induction of recombinant protein production, the method reproducibly gave low concentrations of acetate and glucose. The ability to obtain favorable cultivation conditions independently of strain and operating conditions makes the presented strategy a useful tool, especially in situations where it is important to get good results on the first attempt. 相似文献
3.
通过三联30L全自动发酵罐对虾青素产生菌法夫酵母的分批发酵动力学进行了研究,结果表明,法夫酵母的生长与限制性基质葡萄糖浓度之间符合Logistic方程,建立了细胞生长、产物合成和基质消耗随时间变化的数学模型。应用MATLAB软件对发酵动力学模型进行最优参数估计和非线性拟和,获得最大比生长速率(umax)和产物得率(Yp/x)分别为0.1829/h、0.1524g/g,虾青素分批发酵中细胞生长与产物合成属于偶联型,模型模拟计算结果和实验值能较好地吻合,动力学研究结果表明该模型能较好地反映细胞的生长、底物消耗和产物合成过程机制。 相似文献
4.
5.
A starvation-based dissolved oxygen (DO) transient controller was developed to supply growth-limiting substrate to high cell density fed-batch cultures of recombinant Escherichia coli. The algorithm adjusted a preexisting feed rate in proportion to the culture's oxygen demand, which was estimated from transients in the DO concentration after short periods of feed interruption. In this manner, the addition of glucose feed was precisely controlled at a rate that did not exceed the acetate production threshold, thus preventing acetate accumulation. In comparison to exponential feed algorithms commonly used in industry, the implementation of the new feeding strategy increased the final cell density from 32 to 44 g (dry cell weight).L(-1), with less than 16 mM acetate accumulated, producing an ideal culture for subsequent induction. Despite a constant starvation level and relatively low levels of acetate, experimental cultivations still tended to produce acetate towards the end of the process. The use of a simple Monod model provided an explanation as to why this may occur in high cell density cultivations and suggests how it may be overcome. 相似文献
6.
Francis Mairet Pierre Villon Michèle Boitel‐Conti Khalil Shakourzadeh 《Biotechnology progress》2010,26(3):847-856
This article proposes a feeding strategy based on a kinetic model to enhance hairy roots growth. A new approach for modeling hairy root growth is used, considering that there is no nutrient limitation thanks to an appropriate feeding, and the intracellular pools are supposed to be always saturated. Thus, the model describes the specific growth rate from extracellular concentration of the major nutrients and nutrient uptakes depend on biomass growth. An optimized feeding strategy was determined thanks to the model to maintain the major nutrient levels at their optimum assuming optimal initial concentrations. The optimal feed rate is computed in open loop using kinetic model prediction or in closed loop using conductivity measurements to estimate biomass growth. Datura innoxia was chosen as the model culture system. Shake flask cultures were used to calibrate the model. Finally, cultures in bioreactor were performed to validate the model and the control laws. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
7.
Fungal morphology in many filamentous fungal fermentations leads to high broth viscosity which limits oxygen mass transfer, and often results in reduced productivity. The objective in this study was to determine if a simple, fed-batch, process strategy-pulsed addition of limiting-carbon source-could be used to reduce fungal broth viscosity, and increase productivity of an industrially relevant recombinant enzyme (glucoamylase). As a control, three Aspergillus oryzae fed-batch fermentations were carried out with continuous addition of limiting-carbon. To determine the effect of pulse-feeding, three additional fermentations were carried out with limiting-carbon added in 90-second pulses, during repeated five-minute cycles. In both cases, overall carbon feed-rate was used to control dissolved oxygen concentration, such that increased oxygen availability led to increased addition of limiting-carbon. Pulse-fed fermentations were found to have smaller fungal mycelia, lower broth viscosity, and improved oxygen mass transfer. As a result, more carbon was added to pulse-fed fermentations that led to increased enzyme productivity by as much as 75%. This finding has significant implications for the bioprocessing industry, as a simple process modification which is likely to cost very little to implement in most production facilities, has the potential to substantially increase productivity. 相似文献
8.
9.
For many years, high broth viscosity has remained a key challenge in large-scale filamentous fungal fermentations. In previous studies, we showed that broth viscosity could be reduced by pulsed addition of limiting carbon during fed-batch fermentation. The objective in this study was to determine how changing the frequency of pulsed substrate addition affects fungal morphology, broth rheology, and recombinant enzyme productivity. To accomplish this, a series of duplicate fed-batch fermentations were performed in 20-L fermentors with a recombinant glucoamylase producing strain of Aspergillus oryzae. The total cycle time for substrate pulsing was varied over a wide range (30-2,700 s), with substrate added only during the first 30% of each cycle. As a control, a fermentation was conducted with continuous substrate feeding, and in all fermentations the same total amount of substrate was added. Results show that the total biomass concentration remained relatively unaltered, while a substantial decrease in the mean projected area of fungal elements (i.e., average size) was observed with increasing cycle time. This led to reduced broth viscosity and increased oxygen uptake rate. However, high values of cycle time (i.e., 900-2,700 s) showed a significant increase in fungal conidia formation and significantly reduced recombinant enzyme productivity, suggesting that the fungi channeled substrate to storage compounds rather than to recombinant protein. In addition to explaining the effect of cycle time on fermentation performance, these results may aid in explaining the discrepancies observed on scale-up to larger fermentors. 相似文献
10.
An astaxanthin-producing yeast Xanthophyllomyces dendrorhous ENM5 was cultivated in a liquid medium containing 50 g/L glucose as the major carbon source in stirred fermentors (1.5-L working volume) in fully aerobic conditions. Ethanol was produced during the exponential growth phase as a result of overflow metabolism or fermentative catabolism of glucose by yeast cells. After accumulating to a peak of 3.5 g/L, the ethanol was consumed by yeast cells as a carbon source when glucose in the culture was nearly exhausted. High initial glucose concentrations and ethanol accumulation in the culture had inhibitory effects on cell growth. Astaxanthin production was partially associated with cell growth. Based on these culture characteristics, we constructed a modified Monod kinetic model incorporating substrate (glucose) and product (ethanol) inhibition to describe the relationship of cell growth rate with glucose and ethanol concentrations. This kinetic model, coupled with the Luedeking-Piret equation for the astaxanthin production, gave satisfactory prediction of the biomass production, glucose consumption, ethanol formation and consumption, and astaxanthin production in batch cultures over 25-75 g/L glucose concentration ranges. The model was also applied to fed-batch cultures to predict the optimum feeding scheme (feeding glucose and corn steep liquor) for astaxanthin production, leading to a high volumetric yield (28.6 mg/L) and a high productivity (5.36 mg/L/day). 相似文献
11.
12.
Dongming Xie Edward Miller Pamela Sharpe Ethel Jackson Quinn Zhu 《Biotechnology and bioengineering》2017,114(4):798-812
13.
Lara AR Caspeta L Gosset G Bolívar F Ramírez OT 《Biotechnology and bioengineering》2008,99(4):893-901
Overflow metabolism is an undesirable characteristic of aerobic cultures of Escherichia coli. It results from elevated glucose consumption rates that cause a high substrate conversion to acetate, severely affecting cell physiology and bioprocess performance. Such phenomenon typically occurs in batch cultures under high glucose concentration. Fed-batch culture, where glucose uptake rate is controlled by external addition of glucose, is the classical bioprocessing alternative to prevent overflow metabolism. Despite its wide-spread use, fed-batch mode presents drawbacks that could be overcome by simpler batch cultures at high initial glucose concentration, only if overflow metabolism is effectively prevented. In this study, an E. coli strain (VH32) lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) with a modified glucose transport system was cultured at glucose concentrations of up to 100 g/L in batch mode, while expressing the recombinant green fluorescence protein (GFP). At the highest glucose concentration tested, acetate accumulated to a maximum of 13.6 g/L for the parental strain (W3110), whereas a maximum concentration of only 2 g/L was observed for VH32. Consequently, high cell and GFP concentrations of 52 and 8.2 g/L, respectively, were achieved in VH32 cultures at 100 g/L of glucose. In contrast, maximum biomass and GFP in W3110 cultures only reached 65 and 48%, respectively, of the values attained by the engineered strain. A comparison of this culture strategy against traditional fed-batch culture of W3110 is presented. This study shows that high cell and recombinant protein concentrations are attainable in simple batch cultures by circumventing overflow metabolism through metabolic engineering. This represents a novel and valuable alternative to classical bioprocessing approaches. 相似文献
14.
灵芝胞外多糖分批发酵非结构动力学模型 总被引:9,自引:0,他引:9
在2L搅拌发酵罐上提出了描述了灵芝胞外多糖分批发酵过程中菌球生长、底物消耗和胞外多糖形成的非结构动力学模型。首先研究了灵芝分批发酵特性,结果表明该发酵过程属菌体生长和产物形成相偶联型。然后在总结文献的基础上,运用动力学模型,经过非线性回归,得到了模型中的参数值。通过计算机模拟,证明模型预测值与实际实验值具有良好的拟合性。 相似文献
15.
在7 L发酵罐中研究了溶氧和pH对产朊假丝酵母分批发酵生产谷胱甘肽的影响。结果表明,当葡萄糖浓度为30 g/L且通气量控制在5 L/min时,搅拌转速达到300 r/min即可满足细胞生长和谷胱甘肽合成对溶解氧的需求。不同pH控制方式对谷胱甘肽分批发酵的影响有较大差异。不控制pH时,细胞干重和谷胱甘肽产量比控制pH为55的发酵分别低27%和95%,且有50%的谷胱甘肽向胞外渗漏。研究了将pH控制在4.0、4.5、5.0、5.5、6.0和6.5的谷胱甘肽分批发酵过程,发现在pH 5.5时谷胱甘肽总产量最高。用前期研究建立的动力学模型模拟了不同pH (4.0~6.5)下的分批发酵过程,并从动力学角度解释了pH对细胞生长和谷胱甘肽合成的影响。 相似文献
16.
pH值对D-核糖发酵的影响及补料发酵的研究 总被引:3,自引:1,他引:3
研究了不同 pH值对D 核糖产量的影响。发酵初期pH自然下降时有利于菌体生长 ,菌体生长对数期较长 ,菌体质量浓度最高可达 15 .3g/L ;发酵中后期 pH值控制在 7.0时有利于D 核糖的持续合成 ,同时对D -核糖的流加补料发酵进行了初步研究 ,最终使菌体质量浓度最高达到 2 0 .1g/L ,D 核糖产量达到了 6 2 .5g/L。 相似文献
17.
Hiromichi Morikawa Katsuyuki Tanizawa Mitsugi Senda 《Bioscience, biotechnology, and biochemistry》2013,77(2):343-348
Infrared spectra of film specimens of the cell wall of Nitella were recorded in the untreated state, after acid treatment, and after treatment for removal of pectic substances and hemicellulose. Assignment of the bands in the spectrum of the wall was made. Polarization measurements on the wall indicate that in addition to cellulose, carboxylate ions, which are attributable to pectic substances, are oriented in the wall. The nature of the bonds holding the oriented carboxylate ions is described. 相似文献
18.
Fernando Fratelli Tatiana Joly Siquini Marcelo Estima de Abreu Hisako Gondo Higashi Attilio Converti João Carlos Monteiro de Carvalho 《Biotechnology progress》2010,26(1):88-92
This study deals with the effects of the initial nitrogen source (NZ Case TT) level and the protocol of glucose addition during the fed‐batch production of tetanus toxin by Clostridium tetani. An increase in the initial concentration of NZ Case TT (NZ0) accelerated cell growth, increased the consumption of the nitrogen source as well as the final yield of tetanus toxin, which achieved the highest values (50–60 Lf/mL) for NZ0 ≥ 50 g/L. The addition of glucose at fixed times (16, 56, and 88 h) ensured a toxin yield (~60 Lf/mL) about 33% higher than those of fed‐batch runs with addition at fixed concentration (~45 Lf/mL) and about 300% higher than those obtained in reference batch runs nowadays used at industrial scale. The results of this work promise to substantially improve the present production of tetanus toxin and may be adopted for human vaccine production after detoxification and purification. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
19.
Aims: To evaluate the effect of and exponential feeding regime on the production of epoxide hydrolase (EH) enzyme in recombinant Yarrowia lipolytica in comparison to a constant feed strategy. Methods and Results: An exponential feed model was developed and fermentations were fed at six different exponential rates. A twofold increase in EH productivity and a 15% increase in volumetric EH activity was obtained by applying exponential glucose feed rates in fed‐batch cultivation. These responses were modelled to obtain a theoretical optimum feed rate that was validated in duplicate fermentations. The model optimum of 0·06 h?1 resulted in a volumetric EH activity of c. 5500 U l?1 h?1 and a maximum activity of 206 000 U l?1. This correlated well with model predictions, with a variance of <10%. Conclusions: The use of an exponential feed strategy at a rate of 0·06 h ? 1 yielded best results for all key responses which show a clear improvement over a constant feed strategy. Significance and Impact of the Study: The study was the first evaluation of an exponential feed strategy on recombinant Y. lipolytica for the production of EH enzyme. The results suggest a strategy for the commercial production of a valuable pharmaceutical enzyme. 相似文献