首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The average conformations of adenosine, inosine and guanosine di- and triphosphates in neutral aqueous solution have been investigated by 1H vicinal couplings, chemical shifts and T1 relaxation time measurements at 250 MHz. Comparison of chemical shifts with those of the corresponding nucleotide monophosphates suggests that the β-phosphate group is in all cases oriented towards the base and close to H3′. The vicinal coupling constants indicate that the proportion of the S conformer of the ribose moiety is 55–60% and that the gauche-gauche rotamer of the CH2-OP exocyclic group is predominant.The preferential orientations of the base have been determined by minimization of the standard deviation about the mean of the molecular reorientation correlation times derived from the H8, H1′, H2′ and H3′ relaxation times and computed interproton distances. The problem of the correlation between the syn-anti equilibrium and the N S interconversion has been examined. Typical magnetization recovery curves after a 180° pulse have been simulated in the case of ATP, taking into account cross relaxation effects. It is shown that in most of the molecules under consideration the syn orientation of the base is predominant whereas for ATP the syn and anti are equivalent.  相似文献   

2.
The average conformation of GpU and UpG in neutral aqueous solutions has been investigated by proton chemical shifts and coupling measurements as well as T1 relaxation time experiments. The proportion of the N and S pseudorotational conformers of the ribose ring has been derived from the vicinal coupling constants. The relaxation data provide information about the syn--anti equilibrium of the orientation of the base about the glycosidic bond. This orientation is predominantly syn for the Guo base in both dinucleoside phosphates, that of Urd is anti in the case of GpU and shows an almost equivalent syn and anti character for UpG.  相似文献   

3.
The solution conformations of adenosine, guanosine and inosine in liquid ND3 have been determined by NMR. Comparison of the Karplus analysis of the proton HR spectra of the ribose moiety obtained in this solvent with the data from aqueous solutions of A and I proves that the conformations of the nucleosides are very similar in both liquids. From the analysis of the vicinal coupling constants of the ring protons it has been deduced that the S state C(2')-endo is slightly preferred. The mole fraction in S approximates 0.6 for all three nucleosides. C-13 relaxation measurements have been applied in the determination of the correlation times for rotational diffusion. Only at temperatures below - 40 degrees C is the pseudo-rotation of the furanoside ring slowed down sufficiently for it not to contribute to the measured relaxation rates. From NOE studies and T1 measurements on the individual protons it is derived that the N, C(3')-endo, form of the ribose is correlated with an anti conformation of the base (Y approximately 210 degrees to 220 degrees) and the S, C(2')-endo, form of the ribose with a syn conformation of the base (Y approximately 30 degrees to 50 degrees). The glycosyl torsion angles derived for the two conformations of A, G, and I are equal within the limits of accuracy.  相似文献   

4.
Analyses of high resolution proton and carbon NMR spectra of a series of guanine nucleosides in DMSO have revealed a near linear correlation between the chemical shift of the H2, atom of the sugar moiety and the vicinal coupling constant 3JC4-H1'. This unexpected result provides evidence that the variations in the glycosyl torsion angle between nucleosides in solution are less that those which have previously been reported in crystals and it is an experimental basis for analyzing the syn and anti populations from chemical shift and coupling constant data.  相似文献   

5.
A study has been made of the association and the temperature-dependent conformation of adenosine 3',5'-monophosphate (cyclic AMP) in a neutral aqueous (2H2O) solution by means of proton magnetic resonance chemical shift and relaxation. The concentration and temperature-dependent chemical shifts of H(1'), H(2), and H(8), have enabled us to estimate the self-association constant, Ka = 1.1 +/- 0.3 M-1 at 25 degrees C and thermodynamic parameters delta H = -5.8 +/- 1.5 kcal/mol and delta S (25 degrees C) = -19.0 +/- 3 cal/mol per degree. The NMR-DESERT (Deuterium Substitution Effect on Relaxation Times) method has been utilized for the determination of the syn-anti conformational equilibrium in the monomeric state and for the determination of the mutual orientation of the two adenine rings in the dimeric state of cyclic AMP. The molecules were found to coexist with nearly equimolarity or syn-anti conformers and thermal activation of the molecules perturbs the syn-anti conformational equilibrium to comprise the syn form in preference at higher temperature. The glycosidic isomerization (from anti to syn) was found to be characterized both by a positive enthalpy change and by a positive entropy change. The cyclic AMP molecules prefer to take a 'trans-stacking' conformation in the dimeric state where the two molecules are arranged in such a way that the H(2) of one molecule is close to the H(8) of the other.  相似文献   

6.
Conformation and dynamics of short DNA duplexes: (dC-dG)3 and (dC-dG)4   总被引:2,自引:0,他引:2  
Natural abundance 13C NMR spectra of duplexed (dC-dG)3 and (dC-dG)4 exhibit resolved resonances for most of the carbons at 0.1M NaCl in aqueous solution. Large transitions in chemical shift for many of the hexamer carbons (up to 1.8 ppm) are observed in variable temperature measurements. Determination of spin-lattice relaxation times and nuclear Overhauser enhancements in 0.1M NaCl indicate that the duplexes tumble almost isotropically, with overall correlation times near 5 nsec; the sugar carbons experience more rapid local motions than do the base carbons. The relaxation data are also consistent with the most rapid local motions occurring at the chain-terminal residues, especially in the Cyd(1) sugar. 4M NaCl causes changes in the 13C chemical shifts of most of the guanine base carbons, and rearrangements in the deoxyribose carbon shifts; this is consistent with changes predicted by a salt-induced B to Z transition, viz. conversion of the guanylates from the anti to syn range about the glycosyl bond, and from the S to N pseudorotational state of the deoxyribose ring.  相似文献   

7.
Although alpha-nucleosides are not found in nucleic acid, they do occur as constituents of smaller molecules in living cells, e.g., in vitamin B(12). There are now several examples of alpha-nucleosides exerting a biological activity in some instances equal to, or even exceeding, that of the corresponding beta-anomer. Examples include growth inhibitory properties against mouse leukemia cells and antitumor activity. From stereochemical point of view, alpha-anomers serve as references for studying of interaction of the base with the sugar moiety in beta-anomers and may help in better understanding of structure-activity relationships. One important problem preventing conformational analysis of alpha nucleosides is uncertainty in the determination of vicinal coupling constants from simulation of overlapping sugar proton resonances of strongly coupled spin systems. A successful resolution of near-isochronous H3' and H4' resonances made possible a full conformational analysis for a series of alpha-anomers C5-substituted 2'-deoxyuridines, including methyl, ethyl, isopropyl, fluor, vinyl, and bromovinyl, in comparison to their beta counterparts. Conformation of the sugar ring is determined from proton-proton coupling constants and described in terms of pseudorotation between two main puckering domains C2'endo (S) and C3'endo (N). A thorough analysis of chemical shifts as well as conformation of the sugar ring and C4'-C5' rotamers made possible determination of conformational preferences in equilibrium about the glycosidic bond between two regions, anti and syn. This work provides insights into the role of anomeric configuration of the base in conformational behavior of the sugar moiety, a link in the backbone of nucleic acids.  相似文献   

8.
We used 7Li NMR spin-lattice relaxation times and 31P NMR chemical shifts to study the binding of Li+ and Mg2+ to the phosphate moieties of ATP and ADP. To examine the binding of Li+ and Mg2+ to the base and ribose moieties, we used 1H and 13C NMR chemical shifts. The 7Li NMR relaxation times of Li+/Mg2+ mixtures of ATP or ADP increased with increasing concentrations of Mg2+, suggesting competition between the two ions for adenine nucleotides. No significant binding of Li+ and Mg2+ to the base and ribose moieties occurred. At the pH and ionic strength used, 2:1 and 1:1 species of the Li(+)-ATP and Li+-ADP complexes were present, with the 2:1 species predominating. In contrast, 1:1 species predominated for the Mg(2+)-ADP and Mg(2+)-ATP complexes. We calculated the Li(+)-nucleotide binding constants in the presence and absence of Mg2+ and found them to be somewhat greater in the presence of Mg2+. Although competition between Li+ and Mg2+ for ATP and ADP phosphate binding sites in solution is consistent with the 31P chemical shift data, the possibility that the Li+ and Mg2+ form mixed complexes with the phosphate groups of ATP or ADP cannot be ruled out.  相似文献   

9.
The concentration dependences of 1H-NMR chemical shifts and spin-lattice relaxation rates were measured for chloroquine in aqueous solution. The weak self-association constant was evaluated according to a dimerization equilibrium with the formation of self-stacked adducts (Kd = 4.52 +/- 0.68 l mol-1). The motional correlation times were evaluated for the monomer and the dimer by measuring intramolecular dipolar cross-relaxation rates of aromatic vicinal protons (tau cm = 0.06 ns and tau cd = 0.26 ns). The geometry of the stacked dimer was elucidated by measuring intermolecular dipolar cross-relaxation rates and interpreted in terms of partial superposition of quinoline moieties.  相似文献   

10.
Reaction of 2',3'-O-isopropylidene inosine with benzyl bromide (1 h, rt) led to the 1,5'-O-dibenzylderivative 4, but by increasing the reaction time or the temperature, compound 4 is further transformed into the 1,7,5'-O-tribenzylinosine derivative 5. Similarly, the 7-methyl-1,5'-O-dibenzylderivative 6 has been synthesized from 4. The 1H-NMR spectra of 5 and 6 showed peculiar chemical shifts for geminal protons (H5' and H5' of the ribose, and the CH2 of the benzyl groups). Preliminary NMR studies have been performed, including NOESY experiments that point toward the predominant existence of conformers that are stabilized by an electrostatic interaction between the positively charged imidazole of the base moiety and the high electron density of the 5'-benzyl substituent.  相似文献   

11.
The chemical shifts of 1H resonances of non exchangeable protons (except H5', H5" and adenine H2) of over six hundred nucleotides have been collected. The influence which the base of the nucleotide itself as well as the bases on its 5' and 3' side exert on the chemical shifts of the various resonances has been investigated. Most of the resonances appear to be predominantly influenced by only one base. For H2', H2", H3', H4' and H6/H8 this is the base of the central nucleotide, for H5(C) and CH3(T) it is the one on the 5' side and for H1' it is the one on the 3' side. Chemical shift distribution profiles are presented which allow an estimation of the probability of finding a particular resonance at a particular position in the spectrum.  相似文献   

12.
The aqueous solution conformation of four purine 3':5'-nucleotides varying in their substituents at C-6 and C-8 has been studied using gadolinium(III) to perturb the proton relaxation times. The ribose conformations are inferred. All the nucleotides are best described as being in a dynamic equilibrium between syn and anti conformations and the position of this equilibrium is not dramatically affected by changing the substituent at C-6. These nucleotides in their neutral base form slightly favour an anti conformation. In the presence of a bulky methylthio group at C-8 the equilibrium is shifted towards a dominance from the syn conformation due to steric repulsion factors.  相似文献   

13.
Proton magnetic resonance studies of 2'-o-methyladenosine in 2H2O have been carried out at variable temperature and p2H. The chemical shifts and H-H coupling constants are discussed in terms of the molecular conformation. Comparison of the data with those of adenosine reveals that 2'-O-methylation has little influence on the conformation. At neutral p2H where the adenine base is not protonated, the molecules favor a 2' endo, gauche-gauche conformation. Protonation of the base at the N(1) position leads to a decrease in the 2' endo, gauche-gauche bias. The data for 2'-O-methyladenosine and adenosine, as well as for several other purine derivatives, reveal the presence of a correlation between the sugar pucker and the C(5')-C(4') conformer distribution which is the inverse of the correlation previously reported for pyrimidine derivatives.  相似文献   

14.
Conformational investigations of the tetrapeptide Pro-D-Phe-Pro-Gly in water solution were carried out by 1H and 13C NMR spectroscopy. The internal proline residue allows for the possibility of cis/trans isomerization about the D-Phe-Pro peptide bond resulting in two conformational isomers. The major isomer was identified as the trans isomer. The pH-dependence of the cis/trans equilibrium supports an additional stabilisation of the trans isomer by an intramolecular ionic interaction between the amino- and carboxy-terminus in the zwitterionic state. Based on 13C spin-lattice relaxation times (T1), different pyrrolidine ring conformations of Pro1 and Pro3 could be determined. By combination of several NMR data (vicinal coupling constants 3JN alpha, temperature dependence of the NH chemical shifts, differences in the chemical shifts between the beta and gamma carbons of the proline residues) and energy minimization calculations, a type II' beta-turn should contribute considerably to the overall structure of the trans isomer.  相似文献   

15.
1H NMR study and conformational analysis of a broad series of biologically important C5-substituted 2'-deoxyuridines, including alkyl, halogen, vinyl, hydroxymethyl, and hydroxy derivatives as well as nitro, formyl, trifluoromethyl, and dimethylamino substituents, is presented. A thorough analysis of chemical shifts in correlation with C5-substituent electronegativity as well as calculations by SCF semi-empirical method of the formal charge localized on C6 carbon is discussed in terms of charge distribution for electron attracting and electron donating groups. Conformation of the sugar ring is determined from proton-proton coupling constants and described in terms of pseudorotation between two main puckering domains C2'endo (S) and C3'endo (N). Generally, electron donating groups destabilise the N conformation, simultaneously decreasing the mean pseudorotation amplitude. Absolute assignments of the H5' and H5' methylene protons in 1H NMR spectra permitted the unequivocal determination of molar fractions of the three classical exocyclic C4'-C5' rotamers gauche+, trans, and gauche-, and correlation of them with the sugar ring puckering domains. Conformation about the glycosidic bond is described in terms of equilibrium between two conformational regions, anti and syn. Finally, the role of the C5-substituent in the creation of cytotoxic activity is considered on the basis of a simplified model assuming that compound activity is a function of substituent polar surface, its molecular volume, and its molecule polarity defined at the relative partition of the polar atoms.  相似文献   

16.
The 31P chemical shifts of all 13 phosphates and the chemical shifts of nearly all of the non-exchangeable protons of a symmetrical 14 base pair lac pseudooperator DNA fragment have been assigned by regiospecific labeling with oxygen-17 and two-dimensional NMR techniques. At 22 degrees C, 8 of the 13 phosphorus resonances can distinctly be resolved while the remaining 5 resonances occur in two separate overlapping regions. The 31P chemical shifts of this particular 14 base pair oligonucleotide do not follow the general observation that the more internal the phosphate is located within the oligonucleotide sequence the more upfield the 31P resonance occurs, as shown from other 31P assignment studies. Failure of this general rule is believed to be a result of helical distortions that occur along the oligonucleotide double helix, on the basis of the analysis of Callidine [Callidine, C.R. (1982) J. Mol. Biol. 161, 343-352]. Notable exceptions to the phosphate position relationship are 5'-Py-Pu-3' dinucleotide sequences, which resonate at a lower field strength than expected in agreement with similar results as reported by Ott and Eckstein [Ott, J., & Eckstein, F. (1985) Biochemistry 24, 253]. A reasonable correlation exists between 31P chemical shifts values of the 14-mer and the helical twist sum function of Calladine. The most unusual 31P resonance occurs most upfield in the 31P spectrum, which has been assigned to the second phosphate position (5'-GpT-3') from the 5' end. This unusual chemical shift may be the result of the predicted large helical twist angle that occurs at this position in the 14-mer sequence. Further, it is believed that the large helical twist represents a unique structural feature responsible for optimum binding contact between lac repressor protein and this 14-mer lac pseudooperator segment. Assignments of proton resonances were made from two-dimensional 1H-1H nuclear Overhauser effect (NOESY) connectivities in a sequential manner applicable to right-handed B-DNA, in conjunction with two-dimensional homonuclear and heteronuclear J-correlated spectroscopies (1H-1H COSY and 31P-1H HETCOR). Most nonexchangeable base proton and deoxyribose proton (except for some unresolved H4', H5', and H5" protons) resonances were assigned.  相似文献   

17.
The complex 1H NMR spectrum of methyl 2,6:3,4-dianhydro-alpha-D-altropyranoside (1) has been analyzed and simulated in detail by using input parameters derived from experimental 1H chemical shifts, long- and short-range coupling constants, spin-lattice relaxation times, and effective, spin-spin relaxation times obtained by trial and error matching of the experimental and simulated spectra. The 13C spin-lattice relaxation times of 1 have also been measured, and along with the 1H-1H long- and short-range coupling constants, have been interpreted in terms of the geometry of 1 defined by molecular dynamics with simulated annealing.  相似文献   

18.
The conformations of the 2':3'-cyclic mononucleotides of adenosine and cytidine in deuterium oxide has been studied at pH 2.3, using lanthanide ions as paramagnetic nuclear magnetic resonance (NMR) probes. It was not possible to find any single conformation for these molecules which accounts for the observed shift and relaxation data. This situation is in agreement with the interpretation of vicinal 1H-1H and 1H-31P coupling constants, which indicate that the ribofuranose and cyclic phosphate rings are in rapid equilibrium between different puckered forms. The interpretation of the lanthanide data in terms of an equilibrium between different conformations give average rotamer populations in good agreement with the coupling constant analysis. The conformations of these systems in aqueous solutions were found to be more flexible than in the solid state, where rigid planar ribofuranose rings have been observed. Adenosine 2':3'-monophosphate differs from cytidine 2':3'-monophosphate at the glycosidic link.  相似文献   

19.
Pradhan P  Tirumala S  Liu X  Sayer JM  Jerina DM  Yeh HJ 《Biochemistry》2001,40(20):5870-5881
Two-dimensional NMR was used to determine the solution structure of an undecanucleotide duplex, d(CGGTCACGAGG).d(CCTCGTGACCG), in which (+)-(7S,8R,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene is covalently bonded to the exocyclic N(6)() amino group of the central deoxyadenosine, dA(6), through trans addition at C10 of the epoxide (to give a 10S adduct). The present study represents the first NMR structure of a benzo[a]pyrene (10S)-dA adduct in DNA with a complementary T opposite the modified dA. Exchangeable and nonexchangeable protons of the modified duplex were assigned by the use of TOCSY (in D(2)O) and NOESY spectra (in H(2)O and D(2)O). Sequential NOEs expected for a B-type DNA conformation with typical Watson-Crick base pairing are observed along the duplex, except at the lesion site. We observed a strong intraresidue NOE cross-peak between H1' and H8 of the modified dA(6). The sugar H2' and H2' ' of dC(5) lacked NOE cross-peaks with H8 of dA(6) but showed weak interactions with H2 of dA(6) instead. In addition, the chemical shift of the H8 proton (7.51 ppm) of dA(6) appears at a higher field than that of H2 (8.48 ppm). These NOE and chemical shift data for the dA(6) base protons are typical of a syn glycosidic bond at the modified base. Restrained molecular dynamics/energy minimization calculations show that the hydrocarbon is intercalated from the major groove on the 3'-side of the modified base between base pairs A(6)-T(17) and C(7)-G(16) and confirm the syn glycosidic angle (58 degrees ) of the modified dA(6). In the syn structure, a weak A-T hydrogen bond is possible between the N3-H proton of T(17) and N7 of dA(6) (at a distance of 3.11 A), whereas N1, the usual hydrogen bonding partner for N3-H of T when dA is in the anti conformation, is 6.31 A away from this proton. The 10(S)-dA modified DNA duplex remains in a right-handed helix, which bends in the direction of the aliphatic ring of BaP at about 42 degrees from the helical axis. ROESY experiments provided evidence for interconversion between the major, syn conformer and a minor, possibly anti, conformer.  相似文献   

20.
Proton NMR studies of d(CGT), d(TCG) and d(CGTCG) were carried out at 300 and 500 MHz. The temperature and concentration dependence of the chemical shifts of various resonances indicates duplex formation only in the cases of d(TCG) and d(CGTCG). It is concluded that d(TCG) forms a mini-duplex stabilized by a 5'-dangling thymine base. Thermodynamic parameters of the duplex-to-coil equilibrium of the d(TCG) duplex are: delta H0 = -22.3 kcal/mol and delta S0 = -70 cal/mol. K, which correspond to approximately 40% duplex formation at 0 degrees C in a 2 mM nucleotide solution. Comparison of these data with thermodynamic parameters given earlier [Borer, P.N., Dengler, B., Tinoco, I. and Uhlenbeck, O.C. (1974) J. Mol. Biol. 86, 843-853] leads to the conclusion that the dangling base stabilization observed here is approximately equivalent to the stabilization caused by one or two additional A . T base pairs. The chemical shift behaviour of various resonances in d(CGTCG) indicates duplex formation without looping out of the thymine bases. The T X T mismatch does not seem to disturb the helical structure to a large extent. Analysis of the vicinal proton-proton coupling constants of the three compounds yielded geometrical data for the sugar rings. The data are interpreted in terms of N and S pseudorotational ranges. It is shown that a distinct conformation-transmission effect is exerted by the guanosine residues in a 5'----3' direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号