首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Pax-6 protein is vital for eye development in all seeing animals, from sea urchins to humans. Either of the Pax6 genes in Drosophila (twin of eyeless and eyeless) can induce a gene cascade leading to formation of entire eyes when expressed ectopically. The twin of eyeless (toy) gene in Drosophila is expressed in the anterior region of the early fly embryo. At later stages it is expressed in the brain, ventral nerve cord and (eventually) the visual primordium that gives rise to the eye-antennal imaginal discs of the larvae. These discs subsequently form the major part of the adult head, including compound eyes. We have searched for genes that are required for normal toy expression in the early embryo to elucidate initiating events of eye organogenesis. Candidate genes identified by mutation analyses were subjected to further knock-out and miss-expression tests to investigate their interactions with toy. Our results indicate that the head-specific gap gene empty spiracles can act as a repressor of Toy, while ocelliless (oc) and spalt major (salm) appear to act as positive regulators of toy gene expression.  相似文献   

2.
Fic W  Juge F  Soret J  Tazi J 《PloS one》2007,2(2):e253
The genetic programs specifying eye development are highly conserved during evolution and involve the vertebrate Pax-6 gene and its Drosophila melanogaster homolog eyeless (ey). Here we report that the SR protein B52/SRp55 controls a novel developmentally regulated splicing event of eyeless that is crucial for eye growth and specification in Drosophila. B52/SRp55 generates two isoforms of eyeless differing by an alternative exon encoding a 60-amino-acid insert at the beginning of the paired domain. The long isoform has impaired ability to trigger formation of ectopic eyes and to bind efficiently Eyeless target DNA sequences in vitro. When over-produced in the eye imaginal disc, this isoform induces a small eye phenotype, whereas the isoform lacking the alternative exon triggers eye over-growth and strong disorganization. Our results suggest that B52/SRp55 splicing activity is used during normal eye development to control eye organogenesis and size through regulation of eyeless alternative splicing.  相似文献   

3.
The Drosophila Pax-6 gene eyeless (ey) plays a key role in eye development. Here we show tht Drosophila contains a second Pax-6 gene, twin of eyeless (toy), due to a duplication during insect evolution. Toy is more similar to vertebrate Pax-6 proteins than Ey with regard to overall sequence conservation, DNA-binding function, and early expression in the embryo, toy and ey share a similar expression pattern in the developing visual system, and targeted expression of Toy, like Ey, induces the formation of ectopic eyes. Genetic and biochemical evidence indicates, however, that Toy functions upstream of ey by directly regulating the eye-specific enhancer of ey. Toy is therefore required for initiation of ey expression in the embryo and acts through Ey to activate the eye developmental program.  相似文献   

4.
5.
Drosophila eye development is under the control of early eye specifying genes including eyeless (ey), twin of eyeless (toy), eyes absent (eya), dachshund (dac) and sine oculis (so). They are all conserved between vertebrates and insects and they interact in a combinatorial and hierarchical network to regulate each other expression. so has been shown to be directly regulated by ey through an eye-specific enhancer (so10). We further studied the regulation of this element and found that both Drosophila Pax6 proteins namely EY and TOY bind and positively regulate so10 expression through different binding sites. By targeted mutagenesis experiments, we disrupted these EY and TOY binding sites and studied their functional involvement in the so10 enhancer expression in the eye progenitor cells. We show a differential requirement for the EY and TOY binding sites in activating so10 during the different stages of eye development. Additionally, in a rescue experiment performed in the so(1) mutant, we show that the EY and TOY binding sites are required for compound eye and ocellus development respectively. Altogether, these results suggest a differential requirement for EY and TOY to specify the development of the two types of adult visual systems, namely the compound eye and the ocellus.  相似文献   

6.
Organogenesis is a complex developmental process, which requires tight regulation of selector gene expression to specify individual organ types. The Pax6 homolog Eyeless (Ey) is an example of such a factor and its expression pattern reveals it is dynamically controlled during development. Ey?s paralog Twin of eyeless (Toy) induces its expression during embryogenesis, and the two genes are expressed in nearly identical patterns during the larval stages of development. While Ey must be expressed to initiate retinal specification, it must subsequently be repressed behind the morphogenetic furrow to allow for neuronal differentiation. Thus far, a few factors have been implicated in this repression including the signaling pathways Hedgehog (Hh) and Decapentaplegic (Dpp), and more recently downstream components of the retinal determination gene network (RDGN) Sine oculis (So), Eyes absent (Eya), and Dachshund (Dac). Homeodomain-interacting protein kinase (Hipk), a conserved serine–threonine kinase, regulates numerous factors during tissue patterning and development, including the Hh pathway. Using genetic analyses we identify Hipk as a repressor of both Toy and Ey and show that it may do so, in part, through Hh signaling. We also provide evidence that Ey repression is a critical step in ectopic eye development and that Hipk plays an important role in this process. Because Ey repression within the retinal field is a critical step in eye development, we propose that Hipk is a key link between eye specification and patterning.  相似文献   

7.
8.
In Drosophila, the sine oculis (so) gene is important for the development of the entire visual system, including Bolwig's organ, compound eyes and ocelli. Together with twin of eyeless, eyeless, eyes absent and dachshund, so belongs to a network of genes that by complex interactions initiate eye development. Although much is known about the genetic interactions of the genes belonging to this retinal determination network, only a few such regulatory interactions have been analysed down to the level of DNA-protein interactions. Previous work in our laboratory identified an eye/ocellus specific enhancer of the sine oculis gene that is directly regulated by eyeless and twin of eyeless. We further characterized this regulatory element and identified a minimal enhancer fragment of so that sets up an autoregulatory feedback loop crucial for proper ocelli development. By systematic analysis of the DNA-binding specificity of so we identified the most important nucleotides for this interaction. Using the emerging consensus sequence for SO-DNA binding we performed a genome-wide search and have thereby been able to identify eyeless as well as the signalling gene hedgehog as putative targets of so. Our results strengthen the general assumption that feedback loops among the genes of the retinal determination network are crucial for proper development of eyes and ocelli.  相似文献   

9.
10.
In early vertebrate eye development, the retinal anlage is specified in the anterior neuroectoderm. During neurulation, the optic vesicles evaginate from the lateral wall of the prosencephalon. Here we describe the temperature-sensitive mutation eyeless in the Japanese medakafish. Marker gene analysis indicates that, whereas, specification of two retinal primordia and proximodistal patterning takes place in the mutant embryo, optic vesicle evagination does not occur and subsequent differentiation of the retinal primordia is not observed. The mutation eyeless thus uncouples patterning and morphogenesis at early steps of retinal development. Temperature-shift experiments indicate a requirement for eyeless activity prior to optic vesicle evagination. Cell transplantation shows that eyeless acts cell autonomously.  相似文献   

11.
12.
The Drosophila Pax6 homolog twin of eyeless (toy) is so far the first zygotically expressed gene involved in eye morphogenesis in Drosophila. The study of its expression during embryogenesis is therefore informative of the initial events of eye development in Drosophila. We have analyzed how the initial expression domain of toy at cellular blastoderm is regulated. We show that the three maternal patterning systems active in the cephalic region (the anterior, terminal and dorsal-ventral systems) cooperate with zygotically activated gap genes to shape the initial expression domain of toy. Whereas Bicoid, Dorsal and Torso signaling synergistically act as activators, Hunchback, Knirps and Decapentaplegic act as repressors.  相似文献   

13.
Eye specification in Drosophila is thought be controlled by a set of seven nuclear factors that includes the Pax6 homolog, Eyeless. This group of genes is conserved throughout evolution and has been repeatedly recruited for eye specification. Several of these genes are expressed within the developing eyes of vertebrates and mutations in several mouse and human orthologs are the underlying causes of retinal disease syndromes. Ectopic expression in Drosophila of any one of these genes is capable of inducing retinal development, while loss-of-function mutations delete the developing eye. These nuclear factors comprise a complex regulatory network and it is thought that their combined activities are required for the formation of the eye. We examined the expression patterns of four eye specification genes, eyeless (ey), sine oculis (so), eyes absent (eya), and dachshund (dac) throughout all time points of embryogenesis and show that only eyeless is expressed within the embryonic eye anlagen. This is consistent with a recently proposed model in which the eye primordium acquires its competence to become retinal tissue over several time points of development. We also compare the expression of Ey with that of a putative antennal specifying gene Distal-less (Dll). The expression patterns described here are quite intriguing and raise the possibility that these genes have even earlier and wide ranging roles in establishing the head and visual field.  相似文献   

14.
15.
The Decapentaplegic and Notch signaling pathways are thought to direct regional specification in the Drosophila eye-antennal epithelium by controlling the expression of selector genes for the eye (Eyeless/Pax6, Eyes absent) and/or antenna (Distal-less). Here, we investigate the function of these signaling pathways in this process. We find that organ primordia formation is indeed controlled at the level of Decapentaplegic expression but critical steps in regional specification occur earlier than previously proposed. Contrary to previous findings, Notch does not specify eye field identity by promoting Eyeless expression but it influences eye primordium formation through its control of proliferation. Our analysis of Notch function reveals an important connection between proliferation, field size, and regional specification. We propose that field size modulates the interaction between the Decapentaplegic and Wingless pathways, thereby linking proliferation and patterning in eye primordium development.  相似文献   

16.
17.
18.
19.
20.
The spinotectal somatosensory projection was compared in normal, genetically eyeless, and embryonically manipulated salamanders. In normal animals, serotonin fluorescence was restricted to the intermediate tectalneuropil. This same region showed both high levels of serotonin uptake and somatosensory single unit electrical activity. In mutant eyeless salamanders and in normal animals enucleated early in development, serotonin fluorescence, serotonin uptake, and somatosensory activity were present in the superficial tectal neuropil. One-eyed animals, either genetically normal axolotls with one eye enucleated embryonically or genetically eyeless animals in which a normal eye had been transplanted, showed normal intermediate serotonin fluroescence and somatosensory physiology in the visually innervated half-tectum. In the visually uninnervated half-tectum, they showed superficial serotonin fluorescence and somatosensory physiology. In normal animals, 5,7-dihydroxytryptamine (5,7-DHT), a specific poison for serotonergic fibers, eliminated physiological responses in the contralateral somatosensory tectal region. The 5,7-DHT poisoning also abolished U.V.-induced serotonin fluorescence in the intermediate tectal neuropil. These results are discussed in terms of (1) evidence for serotonin as a central neurotransmitter for somatosensory information in the tectum, (2) the effects of eyelessness on tectal organization, and (3) related results in other animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号