共查询到20条相似文献,搜索用时 14 毫秒
1.
He J Kargacin ME Kargacin GJ Ward CA 《American journal of physiology. Heart and circulatory physiology》2003,285(2):H661-H668
Tamoxifen is an estrogen receptor antagonist used in the treatment of breast cancer. However, tamoxifen has been shown to induce QT prolongation of the electrocardiogram, thereby potentially causing life-threatening polymorphic ventricular arrhythmias. The purpose of the present study was to elucidate the electrophysiological mechanism(s) that underlie the arrhythmogenic effects of tamoxifen. We used standard ruptured whole cell and perforated patch-clamping techniques on rat ventricular myocytes to investigate the effects of tamoxifen on cardiac action potential (AP) waveforms and the underlying K+ currents. Tamoxifen (3 micromol/l) markedly prolonged AP duration, decreased maximal rate of depolarization, and decreased resting membrane potential. At this concentration, tamoxifen significantly depressed the Ca2+-independent transient outward K+ current (Ito), sustained outward delayed rectifier K+ current (Isus), inward rectifier K+ current (IK1), and Na+ current (INa) in the myocytes. Lower concentrations of tamoxifen (1 micromol/l) also decreased the resting membrane potential and significantly depressed IK1 to 79 +/- 5% (n = 5; at -120 mV) of pretreatment values. The results of this study indicate that inhibition of Ito, Isus, and IK1 by tamoxifen may underlie AP prolongation in cardiac myocytes and thereby contribute to prolonged QT interval observed in patients. 相似文献
2.
Summary The voltage-dependent properties of inwardly rectifying potassium channels were studied in adult and neonatal rat ventricular myocytes using patch voltage-clamp techniques. Inward rectification was pronounced in the single-channel currentvoltage relation and outward currents were not detected at potentials positive to the calculated reversal potential for potassium (E
k). Single-channel currents having at least three different conductances were observed and the middle one was predominant. Its single-channel conductance was nonlinear ranging from 20 to 40 pS. Its open-time distribution was fit by a single exponential and the time constants decreased markedly with hyperpolarization fromE
k. The distribution of the closed times required at least two exponentials for fitting, and their taus were related to the bursting behavior displayed at negative potentials. The steady-state probability of being open (P
o) for this channel was determined from the single-channel records; in symmetrical isotonic K solutionsP
o was 0.73 at –60 mV, but fell to 0.18 at –100 mV. The smaller conductance was about one-half the usual value and the open times were greatly prolonged. The large conductance was about 50 percent greater than the usual value and the open times were very brief. TheP
o(V) relation, the kinetics and the conductance of the predominant channel account for most of the whole cell inwardly rectifying current. The kinetics suggest that an intrinsic K+-dependent mechanism may control the gating, and the conductance of this channel. In the steady state, the opening and closing probabilities for the two smaller channels were not independent of each other, suggesting the possibility of a sub-conductance state or cooperativity between different channels. 相似文献
3.
Serotonin depolarizes the membrane potential in rat mesenteric artery myocytes by decreasing voltage-gated K+ currents 总被引:2,自引:0,他引:2
Bae YM Kim A Kim J Park SW Kim TK Lee YR Kim B Cho SI 《Biochemical and biophysical research communications》2006,347(2):468-476
We hypothesized that voltage-gated K+ (Kv) currents regulate the resting membrane potential (Em), and that serotonin (5-HT) causes Em depolarization by reducing Kv currents in rat mesenteric artery smooth muscle cells (MASMCs). The resting Em was about -40 mV in the nystatin-perforated patch configuration, and the inhibition of Kv currents by 4-aminopyridine caused marked Em depolarization. The inhibition of Ca2+-activated K+ (KCa) currents had no effect on Em. 5-HT (1 microM) depolarized Em by approximately 11 mV and reduced the Kv currents to approximately 63% of the control at -20 mV. Similar 5-HT effects were observed with the conventional whole-cell configuration with a weak Ca2+ buffer in the pipette solution, but not with a strong Ca2+ buffer. In the presence of tetraethylammonium (1mM), 5-HT caused Em depolarization similar to the control condition. These results indicate that the resting Em is largely under the regulation of Kv currents in rat MASMCs, and that 5-HT depolarizes Em by reducing Kv currents in a [Ca2+]i-dependent manner. 相似文献
4.
Calcium-dependent inactivation of the ATP-sensitive K+ channel of rat ventricular myocytes 总被引:2,自引:0,他引:2
I Findlay 《Biochimica et biophysica acta》1988,943(2):297-304
Single-channel currents were recorded from ATP-sensitive K+ channels in inside-out membrane patches excised from isolated rat ventricular myocytes. Perfusion of the internal surface of excised membrane patches with solutions which contained between 5 and 100 microM free calcium caused the loss of K+ATP channel activity which was not reversed when the membranes were washed with Ca-free solution. K+ATP channel activity could be recovered by bathing the patches in Mg.ATP. The loss of K+ATP channel activity provoked by internal calcium was a process which occurred over a time scale of seconds. Channel closure evoked by internal ATP was essentially instantaneous. The speed of K+ATP channel inactivation increased with the concentration of calcium. Neither a phosphatase inhibitor (fluoride ions) nor a proteinase inhibitor (leupeptin) had any effect upon the loss of K+ channel activity stimulated by internal calcium. 相似文献
5.
Outward K+ currents were recorded from 3-day-old embryonic chick ventricular myocytes using the patch clamp method. Two types of macroscopic outward currents were observed, one with rapid activation and de-activation time courses, and the other displaying a slower activation and long-duration tail currents. A time-dependent inactivation at positive potentials was a feature of the rapidly-activating current, allowing resolution of an early outward current. Single K+ channel currents were recorded using the outside-out patch technique. Two classes of K+ channels, which may contribute to the macroscopic currents, were differentiated on the basis of their conductances and kinetics. One class (ca 20 pS conductance) showed a rapid activation upon depolarization, and the other class (ca 60 pS) had a more delayed activation. A time-dependent inactivation of the rapid-activating, single-channel K+ current was also recorded. The two types of K+ channels contribute outward current during the plateau and promote the repolarization of the action potential, and the slowly de-activating K+ current may also be involved in the electrogenesis of automaticity observed in some of these cells. 相似文献
6.
Ian Findlay 《The Journal of membrane biology》1988,101(1):83-92
Summary The effects of ADP upon the gating of ATP-sensitive K+ channels from rat ventricular myocytes have been investigated by patch-clamp single-channel current recording experiments. ADP was applied to the internal surface of excised insideout membrane patches and depending upon the experimental protocol and the concentration it was found that ADP could either inhibit or stimulate openings of ATP-sensitive K+ channels. In the absence of inactivation, ATP-sensitive K+ channels were inhibited by ADP in a dose-dependent manner. Partially inactivated channels, on the other hand, were stimulated by low (10 to 250 M) and inhibited by high (>250 M) concentrations of ADP. ATP-sensitive K+ channels which were being inhibited by ATP (<1 mM) could be opened by the simultaneous application of ADP (50 M to 1 mM). ADP had no effect upon channels inhibited by mM concentrations of ATP. The situation was further complicated when it was found that inhibition evoked by ADP was strongly attenuated by the presence of Mg2+ ions whilst channel stimulation, whether of partially inactivated channels or channels inhibited by ATP, required the presence of Mg2+ ions. The analog of ADP, ADPS, always evoked inhibition of ATP-sensitive K+ channels which was not affected by the presence or absence of Mg2+ ions. 相似文献
7.
8.
Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes 总被引:20,自引:2,他引:20 下载免费PDF全文
Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time-dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes. 相似文献
9.
10.
Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes 总被引:8,自引:0,他引:8 下载免费PDF全文
In the experiments here, the time- and voltage-dependent properties of the Ca2+-independent, depolarization-activated K+ currents in adult mouse ventricular myocytes were characterized in detail. In the majority (65 of 72, approximately 90%) of cells dispersed from the ventricles, analysis of the decay phases of the outward currents revealed three distinct K+ current components: a rapidly inactivating, transient outward K+ current, Ito,f (mean +/- SEM taudecay = 85 +/- 2 ms); a slowly (mean +/- SEM taudecay = 1,162 +/- 29 ms) inactivating K+ current, IK,slow; and a non inactivating, steady state current, Iss. In a small subset (7 of 72, approximately 10%) of cells, Ito,f was absent and a slowly inactivating (mean +/- SEM taudecay = 196 +/- 7 ms) transient outward current, referred to as Ito,s, was identified; the densities and properties of IK,slow and Iss in Ito,s-expressing cells are indistinguishable from the corresponding currents in cells with Ito,f. Microdissection techniques were used to remove tissue pieces from the left ventricular apex and from the ventricular septum to allow the hypothesis that there are regional differences in Ito,f and Ito,s expression to be tested directly. Electrophysiological recordings revealed that all cells isolated from the apex express Ito,f (n = 35); Ito,s is not detected in these cells (n = 35). In the septum, by contrast, all of the cells express Ito,s (n = 28) and in the majority (22 of 28, 80%) of cells, Ito,f is also present. The density of Ito,f (mean +/- SEM at +40 mV = 6.8 +/- 0.5 pA/pF, n = 22) in septum cells, however, is significantly (P < 0.001) lower than Ito,f density in cells from the apex (mean +/- SEM at +40 mV = 34.6 +/- 2.6 pA/pF, n = 35). In addition to differences in inactivation kinetics, Ito,f, Ito,s, and IK,slow display distinct rates of recovery (from inactivation), as well as differential sensitivities to 4-aminopyridine (4-AP), tetraethylammonium (TEA), and Heteropoda toxin-3. IK,slow, for example, is blocked selectively by low (10-50 microM) concentrations of 4-AP and by (>/=25 mM) TEA. Although both Ito,f and Ito,s are blocked by high (>100 microM) 4-AP concentrations and are relatively insensitive to TEA, Ito,f is selectively blocked by nanomolar concentrations of Heteropoda toxin-3, and Ito,s (as well as IK,slow and Iss) is unaffected. Iss is partially blocked by high concentrations of 4-AP or TEA. The functional implications of the distinct properties and expression patterns of Ito,f and Ito,s, as well as the likely molecular correlates of these (and the IK,slow and Iss) currents, are discussed. 相似文献
11.
Developmental increases in the inwardly-rectifying K+ current of embryonic chick ventricular myocytes 总被引:2,自引:0,他引:2
Whole-cell and single-channel inwardly-rectifying K+ currents (IK1) of early (3-day-old) and late (17-day-old) embryonic chick ventricular myocytes were compared to ascertain whether there are developmental changes in the properties of this conductance. The magnitude of the IK1 conductance in the early myocytes was small, but it was increased about five-fold in the older embryonic myocytes. It was found that the density of inwardly-rectifying K+ channels was greater (in the surface membrane) of the 17-day than in the 3-day embryonic myocyte. In addition, the single channel conductance for 17-day myocytes was several-fold larger than for the 3-day myocytes. These results suggest that cardiac inward rectifier channels may not only proliferate in number, but may also undergo structural alterations during development. 相似文献
12.
13.
Different subtypes of alpha1-adrenoceptor modulate different K+ currents via different signaling pathways in canine ventricular myocytes 总被引:2,自引:0,他引:2
Wang H Yang B Zhang Y Han H Wang J Shi H Wang Z 《The Journal of biological chemistry》2001,276(44):40811-40816
Multiple subtypes (alpha1A, alpha1B, and alpha1D) of alpha1-adrenoreceptors (alpha1ARs) co-exist in the heart and mediate a variety of cellular functions. We studied alphaAR modulation of inward rectifier (IK1) and transient outward (Ito) K(+) currents in canine ventricular myocytes. Phenylephrine at 10 microM depressed only Ito without affecting IK1 and at 100 microM inhibited both Ito and IK1. The effect of phenylephrine on Ito was abolished by (+)niguldipine (10 nm) to inhibit alpha1AARs but not by chloroethyclonidine (10 microM) to inactivate alpha1BARs nor by BMY-7378 to antagonize alpha1DARs. In contrast, phenylephrine inhibition of IK1 was reversed only by BMY-7378 (1 nm). PDD (100 nm, phorbol ester activator of protein kinase C (PKC)) simulates and bisindolylmaleimide (50 nm, PKC inhibitor) weakens phenylephrine modulation of Ito but not IK1. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 and inhibitor peptides abolished the effects of phenylephrine on IK1. Enhancement of PKC or CaMKII activities was seen in alpha1aAR- or alpha1dAR-transfected HEK293 cells and in myocytes pretreated with 10 or 100 microM phenylephrine, respectively. Our data suggest that different subtypes of alpha1ARs selectively modulate different cardiac K(+) currents via different signal transduction mechanisms; alpha1AARs mediate Ito regulation via PKC, and alpha1DARs mediate IK1 regulation via CaMKII. 相似文献
14.
Developmental changes in the calcium currents in embryonic chick ventricular myocytes 总被引:1,自引:0,他引:1
Summary Using the patch-clamp technique, we recorded whole-cell calcium current from isolated cardiac myocytes dissociated from the apical ventricles of 7-day and 14-day chick embryos. In 70% of 14-day cells after 24 hr in culture, two component currents could be separated from totalI
Ca activated from a holding potential (V
h) of –80 mV. L-type current (I
L) was activated by depolarizing steps fromV
h –30 or –40 mV. The difference current (I
T) was obtained by subtractingI
L, fromI
Ca.I
T could also be distinguished pharmacologically fromI
L in these cells.I
T was selectively blocked by 40–160 m Ni2+, whereasI
L was suppressed by 1 m D600 or 2 m nifedipine. The Ni2+-resistant and D600-resistant currents had activation thresholds and peak voltages that were near those ofI
T andI
L defined by voltage threshold, and resembled those in adult mammalian heart. In 7-day cells,I
T andI
L could be distinguished by voltage threshold in 45% (S cells), while an additional 45% of 7-day cells were nonseparable (NS) by activation voltage threshold. Nonetheless, in mostNS cells,I
Ca was partly blocked by Ni2+ and by D600 given separately, and the effects were additive when these agents were given together. Differences among the cells in the ability to separateI
T andI
L by voltage threshold resulted largely from differences in the position of the steady-state inactivation and activation curves along the voltage axis. In all cells at both ages in which the steady-state inactivation relation was determined with a double-pulse protocol, the half-inactivation potential (V
1/2) of the Ni2+-resistant currentI
L averaged –18 mV. In contrast,V
1/2 of the Ni2+-sensitiveI
T was –60 mV in 14-day cells, –52 mV in 7-dayS cells, and –43 mV in 7-day NS cells. The half-activation potential was near –2 mV forI
L at both ages, but that ofI
T was –38 mV in 14-day and –29 mV in 7-day cells. Maximal current density was highly variable from cell to cell, but showed no systematic differences between 7-day and 14-day cells. These results indicate that the main developmental change that occurs in the components ofI
Ca is a negative shift with, embryonic age in the activation and inactivation relationships ofI
T along the voltage axis. 相似文献
15.
Functional analysis of Na+/K+-ATPase isoform distribution in rat ventricular myocytes 总被引:1,自引:0,他引:1
The Na+/K+-ATPase (NKA) is the main route for Na+ extrusion from cardiac myocytes. Different NKA -subunit isoforms are present in the heart. NKA-1 is predominant, although there is a variable amount of NKA-2 in adult ventricular myocytes of most species. It has been proposed that NKA-2 is localized mainly in T-tubules (TT), where it could regulate local Na+/Ca2+ exchange and thus cardiac myocyte Ca2+. However, there is controversy as to where NKA-1 vs. NKA-2 are localized in ventricular myocytes. Here, we assess the TT vs. external sarcolemma (ESL) distribution functionally using formamide-induced detubulation of rat ventricular myocytes, NKA current (IPump) measurements and the different ouabain sensitivity of NKA-1 (low) and NKA-2 (high) in rat heart. Ouabain-dependent IPump inhibition in control myocytes indicates a high-affinity NKA isoform (NKA-2, K1/2 = 0.38 ± 0.16 µM) that accounts for 29.5 ± 1.3% of IPump and a low-affinity isoform (NKA-1, K1/2 = 141 ± 17 µM) that accounts for 70.5% of IPump. Detubulation decreased cell capacitance from 164 ± 6 to 120 ± 8 pF and reduced IPump density from 1.24 ± 0.05 to 1.02 ± 0.05 pA/pF, indicating that the functional density of NKA is significantly higher in TT vs. ESL. In detubulated myocytes, NKA-2 accounted for only 18.2 ± 1.1% of IPump. Thus, 63% of IPump generated by NKA-2 is from the TT (although TT are only 27% of the total sarcolemma), and the NKA-2/NKA-1 ratio in TT is significantly higher than in the ESL. The functional density of NKA-2 is 4.5 times higher in the T-tubules vs. ESL, whereas NKA-1 is almost uniformly distributed between the TT and ESL. T-tubules; Na+/K+ pump current; ouabain; external sarcolemma; detubulation 相似文献
16.
Vornanen M Ryökkynen A Nurmi A 《American journal of physiology. Regulatory, integrative and comparative physiology》2002,282(4):R1191-R1199
Temperature has a strong influence on the excitability and the contractility of the ectothermic heart that can be alleviated in some species by temperature acclimation. The molecular mechanisms involved in the temperature-induced improvement of cardiac contractility and excitability are, however, still poorly known. The present study examines the role of sarcolemmal K(+) currents from rainbow trout (Oncorhynchus mykiss) cardiac myocytes after thermal acclimation. The two major K(+) conductances of the rainbow trout cardiac myocytes were identified as the Ba(2+)-sensitive background inward rectifier current (I(K1)) and the E-4031-sensitive delayed rectifier current (I(Kr)). In atrial cells, the density of I(K1) is very low and the density of I(Kr) is remarkably high. The opposite is true for ventricular cells. Acclimation to cold (4 degrees C) modified the two K(+) currents in opposite ways. Acclimation to cold increases the density of I(Kr) and depresses the density of I(K1). These changes in repolarizing K(+) currents alter the shape of the action potential, which is much shorter in cold-acclimated than warm-acclimated (17 degrees C) trout. These results provide the first concrete evidence that K(+) channels of trout cardiac myocytes are adaptable units that provide means to regulate cardiac excitability and contractility as a function of temperature. 相似文献
17.
Horiuchi-Hirose M Kashihara T Nakada T Kurebayashi N Shimojo H Shibazaki T Sheng X Yano S Hirose M Hongo M Sakurai T Moriizumi T Ueda H Yamada M 《American journal of physiology. Heart and circulatory physiology》2011,300(3):H978-H988
In some forms of cardiac hypertrophy and failure, the gain of Ca(2+)-induced Ca(2+) release [CICR; i.e., the amount of Ca(2+) released from the sarcoplasmic reticulum normalized to Ca(2+) influx through L-type Ca(2+) channels (LTCCs)] decreases despite the normal whole cell LTCC current density, ryanodine receptor number, and sarcoplasmic reticulum Ca(2+) content. This decrease in CICR gain has been proposed to arise from a change in dyad architecture or derangement of the t-tubular (TT) structure. However, the activity of surface sarcolemmal LTCCs has been reported to increase despite the unaltered whole cell LTCC current density in failing human ventricular myocytes, indicating that the "decreased CICR gain" may reflect a decrease in the TT LTCC current density in heart failure. Thus, we analyzed LTCC currents of failing ventricular myocytes of mice chronically treated with isoproterenol (Iso). Although Iso-treated mice exhibited intact t-tubules and normal LTCC subunit expression, acute occlusion of t-tubules of isolated ventricular myocytes with osmotic shock (detubulation) revealed that the TT LTCC current density was halved in Iso-treated versus control myocytes. Pharmacological analysis indicated that kinases other than PKA or Ca(2+)/calmodulin-dependent protein kinase II insufficiently activated, whereas protein phosphatase 1/2A excessively suppressed, TT LTCCs in Iso-treated versus control myocytes. These results indicate that excessive β-adrenergic stimulation causes the decrease in TT LTCC current density by altering the regulation of TT LTCCs by protein kinases and phosphatases in heart failure. This phenomenon might underlie the decreased CICR gain in heart failure. 相似文献
18.
The present study was conducted to characterize possible rapid effects of 17-β-estradiol on voltage-gated K(+) channels in preoptic neurons and, in particular, to identify the mechanisms by which 17-β-estradiol affects the K(+) channels. Whole-cell currents from dissociated rat preoptic neurons were studied by perforated-patch recording. 17-β-Estradiol rapidly (within seconds) and reversibly reduced the K(+) currents, showing an EC(50) value of 9.7 μM. The effect was slightly voltage dependent, but independent of external Ca(2+), and not sensitive to an estrogen-receptor blocker. Although 17-α-estradiol also significantly reduced the K(+) currents, membrane-impermeant forms of estradiol did not reduce the K(+) currents and other estrogens, testosterone and cholesterol were considerably less effective. The reduction induced by estradiol was overlapping with that of the K(V)-2-channel blocker r-stromatoxin-1. The time course of K(+) current in 17-β-estradiol, with a time-dependent inhibition and a slight dependence on external K(+), suggested an open-channel block mechanism. The properties of block were predicted from a computational model where 17-β-estradiol binds to open K(+) channels. It was concluded that 17-β-estradiol rapidly reduces voltage-gated K(+) currents in a way consistent with an open-channel block mechanism. This suggests a new mechanism for steroid action on ion channels. 相似文献
19.
20.
A F James J E Ramsey A M Reynolds B M Hendry M J Shattock 《Biochemical and biophysical research communications》2001,284(4):1048-1055
It has been suggested that the positive inotropic effect of the vasoactive peptide hormone, endothelin-1 (ET-1), involves inhibition of cardiac K(+) currents. In order to identify the K(+) currents modulated by ET-1, the outward K(+) currents of isolated rat ventricular myocytes were investigated using whole-cell patch-clamp recording techniques. Outward currents were elicited by depolarisation to +40 mV for 200 ms from the holding potential of -60 mV. Currents activated rapidly, reaching a peak (I(pk)) of 1310 +/- 115 pA and subsequently inactivating to an outward current level of 1063 +/- 122 pA at the end of the voltage-pulse (I(late)) (n = 11). ET-1 (20 nM) reduced I(pk) by 247.6 +/- 60.7 pA (n = 11, P < 0.01) and reduced I(late) by 323.2 +/- 43.9 pA (P < 0.001). The effects of ET-1 were abolished in the presence of the nonselective ET receptor antagonist, PD 142893 (10 microM, n = 5). Outward currents were considerably reduced and the effects of ET-1 were not observed when K(+) was replaced with Cs(+) in the experimental solutions; this indicates that ET-1 modulated K(+)-selective currents. A double-pulse protocol was used to investigate the inactivation of the currents. The voltage-dependent inactivation of the currents from potentials positive to -80 mV was fitted by a Boltzmann equation revealing the existence of an inactivating transient outward component (I(to)) and a noninactivating steady-state component (I(ss)). ET-1 markedly inhibited I(ss) by 43.0 +/- 3.8% (P < 0.001, n = 7) and shifted the voltage-dependent inactivation of I(to) by +3.3 +/- 1.2 mV (P < 0.05). Although ET-1 had little effect on the onset of inactivation of the currents elicited from a conditioning potential of -70 mV, the time-independent noninactivating component of the currents was markedly inhibited. In conclusion, the predominant effect of ET-1 was to inhibit a noninactivating steady-state background K(+) current (I(ss)). These results are consistent with the hypothesis that I(ss) inhibition contributes to the inotropic effects of ET-1. 相似文献