首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forzi L  Hellwig P  Thauer RK  Sawers RG 《FEBS letters》2007,581(17):3317-3321
The Fe atom in the bimetallic active site of [NiFe]-hydrogenases has one CO and two cyanide ligands. To determine their metabolic origin, [NiFe]-hydrogenase-2 was isolated from Escherichia coli grown in the presence of L-[ureido-(13)C]citrulline, purified and analyzed by infrared spectroscopy. The spectra indicate incorporation of (13)C only into the cyanide ligands and not into the CO, showing that cyanide and CO have different metabolic origins. After growth of E. coli in the presence of (13)CO only the CO ligand was labelled with (13)C. Labelling did not result from an exchange of the intrinsic CO ligand with the exogenous CO.  相似文献   

2.
Within the catalytic centre of [NiFe]-hydrogenases one carbonyl and two cyanide ligands are covalently attached to the iron. To identify the metabolic origins of these ligands, the regulatory [NiFe] hydrogenase in conjunction with the indigenous Hyp maturation proteins of Ralstonia eutropha H16 were heterologously overproduced in E. coli grown in the presence of L-[ureido-(13)C] citrulline and NaH(13)CO(3). Infrared spectroscopy of purified hydrogenase provided direct evidence that only the cyanide ligands, but not the CO ligand, originate from CO(2) and carbamoylphosphate. Incorporation of label from (13)CO exclusively into the carbonyl ligand indicates that free CO is a possible precursor in carbonyl ligand biosynthesis.  相似文献   

3.
Lucia Forzi  R. Gary Sawers 《Biometals》2007,20(3-4):565-578
Hydrogenases catalyze the reversible oxidation of dihydrogen. Catalysis occurs at bimetallic active sites that contain either nickel and iron or only iron and the nature of these active sites forms the basis of categorizing the enzymes into three classes, the [NiFe]-hydrogenases, the [FeFe]-hydrogenases and the iron sulfur cluster-free [Fe]-hydrogenases. The [NiFe]-hydrogenases and the [FeFe]-hydrogenases are unrelated at the amino acid sequence level but the active sites share the unusual feature of having diatomic ligands associated with the Fe atoms in the these enzymes. Combined structural and spectroscopic studies of [NiFe]-hydrogenases identified these diatomic ligands as CN- and CO groups. Major advances in our understanding of the biosynthesis of these ligands have been achieved primarily through the study of the membrane-associated [NiFe]-hydrogenases of Escherichia coli. A complex biosynthetic machinery is involved in synthesis and attachment of these ligands to the iron atom, insertion of the Fe(CN)2CO group into the apo-hydrogenase, introduction of the nickel atom into the pre-formed active site and ensuring that the holoenzyme is correctly folded prior to delivery to the membrane. Although much remains to be uncovered regarding each of the individual biochemical steps on the pathway to synthesis of a fully functional enzyme, our understanding of the initial steps in CN- synthesis have revealed that it is generated from carbamoyl phosphate. What is becoming increasingly clear is that the metabolic origins of the carbonyl group may be different.  相似文献   

4.
Paschos A  Glass RS  Böck A 《FEBS letters》2001,488(1-2):9-12
The iron of the binuclear active center of [NiFe]-hydrogenases carries two CN and one CO ligands which are thought to confer to the metal a low oxidation and/or spin state essential for activity. Based on the observation that one of the seven auxiliary proteins required for the synthesis and insertion of the [NiFe] cluster contains a sequence motif characteristic of O-carbamoyl-transferases it was discovered that carbamoyl phosphate is essential for formation of active [NiFe]-hydrogenases in vivo and is specifically required for metal center synthesis suggesting that it is the source of the CO and CN ligands. A chemical path for conversion of a carbamoyl group into cyano and carbonyl moieties is postulated  相似文献   

5.
The bacterial [NiFe]-hydrogenases have been classified as either 'standard' or 'O2-tolerant' based on their ability to function in the presence of O2. Typically, these enzymes contain four redox-active metal centers: a Ni-Fe-CO-2CN- active site and three electron-transferring Fe-S clusters. Recent research suggests that, rather than differences at the catalytic active site, it is a novel Fe-S cluster electron transfer (ET) relay that controls how [NiFe]-hydrogenases recover from O2 attack. In light of recent structural data and mutagenic studies this article reviews the molecular mechanism of O2-tolerance in [NiFe]-hydrogenases and discusses the biosynthesis of the unique Fe-S relay.  相似文献   

6.
根据活性中心金属原子的不同,氢酶主要分为镍铁、铁铁、铁氢酶三大类。铁氢酶是发现较晚、存在物种单一且结构较为特殊的一类氢酶。目前,铁氢酶仅发现于氢营养型产甲烷古菌中。该酶直接催化氢气异裂,还原产甲烷代谢途径中一碳载体四氢蝶呤的次甲基转化为亚甲基。与其他两类氢酶相比,铁氢酶不含传递电子的铁硫簇和双金属活性中心,在结构组成上有较大的差异。此外,铁氢酶活性中心的吡啶环被高度取代,活性中心铁原子直接与酰基碳成键,这些奇特的活性分子结构预示着氢酶全新的催化机制,以及古菌细胞在合成特殊结构大分子方面的特殊功能。本文总结了从1990年发现这类新型氢酶以来的相关研究,分别从氢酶的生理功能、结构特征、催化机制、成熟过程及应用研究等方面阐述铁氢酶的研究进展。  相似文献   

7.
The active site of [Fe-Fe]-hydrogenases is composed of a di-iron complex, where the two metal atoms are bridged together by a putative di(thiomethyl)amine molecule and are also ligated by di-nuclear ligands, namely carbon monoxide and cyanide. Biosynthesis of this metal site is thought to require specific protein machinery coded by the hydE, hydF, and hydG genes. The HydF protein has been cloned from the thermophilic organism Thermotoga maritima, purified, and characterized. The enzyme possesses specific amino acid signatures for GTP binding and is able to hydrolyze GTP. The anaerobically reconstituted TmHydF protein binds a [4Fe-4S] cluster with peculiar EPR characteristics: an S = 1/2 signal presenting a high field shifted g-value together with a S = 3/2 signal, similar to those observed for [4Fe-4S] clusters ligated by only three cysteines. HYSCORE spectroscopy experiments were carried out to determine the nature of the fourth ligand of the cluster, and its exchangeability was demonstrated with the formation of a [4Fe-4S]-imidazole complex.  相似文献   

8.
Significant rates of atmospheric dihydrogen (H2) consumption have been observed in temperate soils due to the activity of high-affinity enzymes, such as the group 1h [NiFe]-hydrogenase. We designed broadly inclusive primers targeting the large subunit gene (hhyL) of group 1h [NiFe]-hydrogenases for long-read sequencing to explore its taxonomic distribution across soils. This approach revealed a diverse collection of microorganisms harboring hhyL, including previously unknown groups and taxonomically not assignable sequences. Acidobacterial group 1h [NiFe]-hydrogenase genes were abundant and expressed in temperate soils. To support the participation of acidobacteria in H2 consumption, we studied two representative mesophilic soil acidobacteria, which expressed group 1h [NiFe]-hydrogenases and consumed atmospheric H2 during carbon starvation. This is the first time mesophilic acidobacteria, which are abundant in ubiquitous temperate soils, have been shown to oxidize H2 down to below atmospheric concentrations. As this physiology allows bacteria to survive periods of carbon starvation, it could explain the success of soil acidobacteria. With our long-read sequencing approach of group 1h [NiFe]-hydrogenase genes, we show that the ability to oxidize atmospheric levels of H2 is more widely distributed among soil bacteria than previously recognized and could represent a common mechanism enabling bacteria to persist during periods of carbon deprivation.Subject terms: Soil microbiology, Biodiversity, Bacterial physiology  相似文献   

9.
10.
Hydrogen-cycling [NiFe] hydrogenases harbor a dinuclear catalytic center composed of nickel and iron ions, which are coordinated by four cysteine residues. Three unusual diatomic ligands in the form of two cyanides (CN) and one carbon monoxide (CO) are bound to the iron and apparently account for the complexity of the cofactor assembly process, which involves the function of at least six auxiliary proteins, designated HypA, -B, -C, -D, -E, and -F. It has been demonstrated previously that the HypC, -D, -E, and -F proteins participate in cyanide synthesis and transfer. Here, we show by infrared spectroscopic analysis that the purified HypCD complexes from Ralstonia eutropha and Escherichia coli carry in addition to both cyanides the CO ligand. We present experimental evidence that in vivo the attachment of the CN ligands is a prerequisite for subsequent CO binding. With the aid of genetic engineering and subsequent mutant analysis, the functional role of conserved cysteine residues in HypD from R. eutropha was investigated. Our results demonstrate that the HypCD complex serves as a scaffold for the assembly of the Fe(CN)2(CO) entity of [NiFe] hydrogenase.  相似文献   

11.

Background  

Hydrogenases catalyze reversible reaction between hydrogen (H2) and proton. Inactivation of hydrogenase by exposure to oxygen is a critical limitation in biohydrogen production since strict anaerobic conditions are required. While [FeFe]-hydrogenases are irreversibly inactivated by oxygen, it was known that [NiFe]-hydrogenases are generally more tolerant to oxygen. The physiological function of [NiFe]-hydrogenase 1 is still ambiguous. We herein investigated the H2 production potential of [NiFe]-hydrogenase 1 of Escherichia coli in vivo and in vitro. The hya A and hya B genes corresponding to the small and large subunits of [NiFe]-hydrogenase 1 core enzyme, respectively, were expressed in BL21, an E. coli strain without H2 producing ability.  相似文献   

12.
The [NiFe] hydrogenases catalyse the reversible conversion of H2 to protons and electrons. The active site consists of a Fe ion with one carbon monoxide, two cyanide, and two cysteine (Cys) ligands. The latter two bridge to a Ni ion, which has two additional terminal Cys ligands. It has been suggested that one of the Cys residues is protonated during the reaction mechanism. We have used combined quantum mechanical and molecular mechanics (QM/MM) geometry optimisations, large QM calculations with 817 atoms, and QM/MM free energy simulations, using the TPSS and B3LYP methods with basis sets extrapolated to the quadruple zeta level to determine which of the four Cys residues is more favourable to protonate for four putative states in the reaction mechanism, Ni-SIa, Ni-R, Ni-C, and Ni-L. The calculations show that for all states, the terminal Cys-546 residue is most easily protonated by 14–51 kJ/mol, owing to a more favourable hydrogen-bond pattern around this residue in the protein.  相似文献   

13.
14.
Hydrogen is an important trace gas in the atmosphere. Soil microorganisms are known to be an important part of the biogeochemical H2 cycle, contributing 80 to 90% of the annual hydrogen uptake. Different aquatic ecosystems act as either sources or sinks of hydrogen, but the contribution of their microbial communities is unknown. [NiFe]-hydrogenases are the best candidates for hydrogen turnover in these environments since they are able to cope with oxygen. As they lack sufficiently conserved sequence motifs, reliable markers for these enzymes are missing, and consequently, little is known about their environmental distribution. We analyzed the essential maturation genes of [NiFe]-hydrogenases, including their frequency of horizontal gene transfer, and found hypD to be an applicable marker for the detection of the different known hydrogenase groups. Investigation of two freshwater lakes showed that [NiFe]-hydrogenases occur in many prokaryotic orders. We found that the respective hypD genes cooccur with oxygen-tolerant [NiFe]-hydrogenases (groups 1 and 5) mainly of Actinobacteria, Acidobacteria, and Burkholderiales; cyanobacterial uptake hydrogenases (group 2a) of cyanobacteria; H2-sensing hydrogenases (group 2b) of Burkholderiales, Rhizobiales, and Rhodobacterales; and two groups of multimeric soluble hydrogenases (groups 3b and 3d) of Legionellales and cyanobacteria. These findings support and expand a previous analysis of metagenomic data (M. Barz et al., PLoS One 5:e13846, 2010, http://dx.doi.org/10.1371/journal.pone.0013846) and further identify [NiFe]-hydrogenases that could be involved in hydrogen cycling in aquatic surface waters.  相似文献   

15.
The presence of a [Fe]-hydrogenase in the hydrogenosomes of the anaerobic chytridiomycete fungus Neocallimastix sp. L2 has been demonstrated by immunocytochemistry, subcellular fractionation, Western-blotting and measurements of hydrogenase activity in the presence of various concentrations of carbon monoxide (CO). Since the hydrogenosomal hydrogenase activity can be inhibited nearly completely by low concentrations of CO, it is likely that the [Fe]-hydrogenase is responsible for at least 90% of the hydrogen production in isolated hydrogenosomes. Most likely, this hydrogenase is encoded by the gene hydL2 that exhibits all the motifs that are characteristic of [Fe]-hydrogenases. The open reading frame starts with an N-terminal extension of 38 amino acids that has the potential to function as a hydrogenosomal targeting signal. The downstream sequences encode an enzyme of a calculated molecular mass of 66.4 kDa that perfectly matches the molecular mass of the mature hydrogenase in the hydrogenosome. Phylogenetic analysis revealed that the hydrogenase of Neocallimastix sp. L2. clusters together with similar ('long-type') [Fe]-hydrogenases from Trichomonas vaginalis, Nyctotherus ovalis, Desulfovibrio vulgaris and Thermotoga maritima. Phylogenetic analysis based on the H-cluster - the only module of [Fe]-hydrogenases that is shared by all types of [Fe]-hydrogenases and hydrogenase-like proteins - revealed a monophyly of all hydrogenase-like proteins of the aerobic eukaryotes. Our analysis suggests that the evolution of the various [Fe]-hydrogenases and hydrogenase-like proteins occurred by a differential loss of Fe-S clusters in the N-terminal part of the [Fe]-hydrogenase.  相似文献   

16.
[NiFe]-hydrogenases are multimeric proteins. The?large subunit contains the NiFe(CN)(2)CO bimetallic active center and the small subunit contains Fe-S clusters. Biosynthesis and assembly of the NiFe(CN)(2)CO active center requires six Hyp accessory proteins. The synthesis of the CN(-) ligands is?catalyzed by the combined actions of HypF and?HypE using carbamoylphosphate as a substrate.?We report the structure of Escherichia coli HypF(92-750) lacking the N-terminal acylphosphatase domain. HypF(92-750) comprises the novel Zn-finger domain, the nucleotide-binding YrdC-like domain, and the Kae1-like universal domain, also binding a nucleotide and a Zn(2+) ion. The two nucleotide-binding sites are sequestered in an internal cavity, facing each other and separated by ~14??. The YrdC-like domain converts carbamoyl moiety to a carbamoyl adenylate intermediate, which is channeled to the Kae1-like domain. Mutations within either nucleotide-binding site compromise hydrogenase maturation but do not affect the carbamoylphosphate phosphatase activity.  相似文献   

17.
The Ni-Fe carbon monoxide (CO) dehydrogenase II (CODHII(Ch)) from the anaerobic CO-utilizing hydrogenogenic bacterium Carboxydothermus hydrogenoformans catalyzes the oxidation of CO, presumably at the Ni-(micro(2)S)-Fe1 subsite of the [Ni-4S-5S] cluster in the active site. The CO oxidation mechanism proposed on the basis of several CODHII(Ch) crystal structures involved the apical binding of CO at the nickel ion and the activation of water at the Fe1 ion of the cluster. To understand how CO interacts with the active site, we have studied the reactivity of the cluster with potassium cyanide and analyzed the resulting type of nickel coordination by x-ray absorption spectroscopy. Cyanide acts as a competitive inhibitor of reduced CODHII(Ch) with respect to the substrate CO and is therefore expected to mimic the substrate. It inhibits the enzyme reversibly, forming a nickel cyanide. In this reaction, one of the four square-planar sulfur ligands of nickel is replaced by the carbon atom of cyanide, suggesting removal of the micro(2)S from the Ni-(micro(2)S)-Fe1 subsite. Upon reactivation of the inhibited enzyme, cyanide is released, and the square-planar coordination of nickel by 4S ligands is recovered, which includes the reformation of the Ni-(micro(2)S)-Fe1 bridge. The results are summarized in a model of the CO oxidation mechanism at the [Ni-4Fe-5S] active site cluster of CODHII(Ch) from C. hydrogenoformans.  相似文献   

18.
The O(2)-tolerant [NiFe] hydrogenases of Ralstonia eutropha are capable of H(2) conversion in the presence of ambient O(2). Oxygen represents not only a challenge for catalysis but also for the complex assembling process of the [NiFe] active site. Apart from nickel and iron, the catalytic center contains unusual diatomic ligands, namely two cyanides (CN(-)) and one carbon monoxide (CO), which are coordinated to the iron. One of the open questions of the maturation process concerns the origin and biosynthesis of the CO group. Isotope labeling in combination with infrared spectroscopy revealed that externally supplied gaseous (13)CO serves as precursor of the carbonyl group of the regulatory [NiFe] hydrogenase in R. eutropha. Corresponding (13)CO titration experiments showed that a concentration 130-fold higher than ambient CO (0.1 ppmv) caused a 50% labeling of the carbonyl ligand in the [NiFe] hydrogenase, leading to the conclusion that the carbonyl ligand originates from an intracellular metabolite. A novel setup allowed us to the study effects of CO depletion on maturation in vivo. Upon induction of CO depletion by addition of the CO scavenger PdCl(2), cells cultivated on H(2), CO(2), and O(2) showed severe growth retardation at low cell concentrations, which was on the basis of partially arrested hydrogenase maturation, leading to reduced hydrogenase activity. This suggests gaseous CO as a metabolic precursor under these conditions. The addition of PdCl(2) to cells cultivated heterotrophically on organic substrates had no effect on hydrogenase maturation. These results indicate at least two different pathways for biosynthesis of the CO ligand of [NiFe] hydrogenase.  相似文献   

19.
In Methanococcus voltae, one of the two [NiFeSe] hydrogenases is unusual in that the large subunit is split into two subunits, each contributing two ligands to the [NiFe] center that catalyzes the heterolytic cleavage of the dihydrogen molecule. We have engineered a fusion of these two subunits. The resulting new enzyme showed no significant difference in hydrogen uptake activity or in the Ni-C or Ni-L EPR spectra compared to the the wild-type enzyme, but exhibited a tenfold increase in both the Km for hydrogen and the Ki for the competitive inhibitor carbon monoxide.  相似文献   

20.
The contribution made by each of the three active [NiFe]-hydrogenases (Hyd) of Escherichia coli during fermentation of glucose or glycerol in peptone-based medium at different pHs was analysed. The activities of the hydrogen-oxidizing Hyd-1 and Hyd-2 enzymes showed a reciprocal dependence on the pH of the medium while Hyd-3, a key component of the hydrogen-evolving formate hydrogenlyase complex, was mainly active at pH 6.5. Our findings identify the conditions during fermentation of glucose or glycerol under which each [NiFe]-hydrogenase is optimally active and demonstrate a previously unrecognized dependence on Hyd-1 activity at low pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号