首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New species may arise via hybridization and without a change in ploidy. This process, termed homoploid hybrid speciation, is theoretically difficult because it requires the development of reproductive barriers in sympatry or parapatry. Theory suggests that isolation may arise through rapid karyotypic evolution and/or ecological divergence of hybrid neospecies. Here, we investigate the role of karyotypic change in homoploid hybrid speciation by generating detailed genetic linkage maps for three hybrid sunflower species, Helianthus anomalus, H. deserticola, and H. paradoxus, and comparing these maps to those previously generated for the parental species, H. annuus and H. petiolaris. We also conduct a quantitative trait locus (QTL) analysis of pollen fertility in a BC2 population between the parental species and assess levels of pollen and seed fertility in all cross-combinations of the hybrid and parental species. The three hybrid species are massively divergent from their parental species in karyotype; gene order differences were observed for between 9 and 11 linkage groups (of 17 total), depending on the comparison. About one-third of the karyoypic differences arose through the sorting of chromosomal rearrangements that differentiate the parental species, but the remainder appear to have arisen de novo (six breakages/six fusions in H. anomalus, four breakages/three fusions in H. deserticola, and five breakages/five fusions in H. paradoxus). QTL analyses indicate that the karyotypic differences contribute to reproductive isolation. Nine of 11 pollen viability QTL occur on rearranged chromosomes and all but one map close to a rearrangement breakpoint. Finally, pollen and seed fertility estimates for F1's between the hybrid and parental species fall below 11%, which is sufficient for evolutionary independence of the hybrid neospecies.  相似文献   

2.
The recurrent origin of diploid hybrid species is theoretically improbable because of the enormous diversity of hybrid genotypes generated by recombination. Recent greenhouse experiments, however, indicate that the genomic composition of hybrid lineages is shaped in part by deterministic forces, and that recurrent diploid hybrid speciation may be more feasible than previously believed. Here we use patterns of variation from chloroplast DNA (cpDNA), nuclear microsatellite loci, cross-viability and chromosome structure to assess whether a well-characterized diploid hybrid sunflower species, Helianthus anomalus, was derived on multiple occasions from its parental species, H. annuus and H. petiolaris. Chloroplast DNA and crossability data were most consistent with a scenario in which H. anomalus arose three times: three different H. anomalus fertility groups were discovered, each with a unique cpDNA haplotype. In contrast, there was no clear signature of multiple, independent origins from the microsatellite loci. Given the age of H. anomalus (> 100 000 years bp), it may be that microsatellite evidence for recurrent speciation has been eroded by mutation and gene flow through pollen.  相似文献   

3.
Andersson, 2. 1995. Crossability variation in four South American Hordeum species— Nord. J. Bot. IS: 355–364. Copenhagen. ISSN 0107–055X.
Intra- and interpopulation crosses within the four South American Hordeum species, H. cordobense, H. chilense, H. muticum and H. stenostachys were performed. Seeds were obtained in all intrapopulation crosses within all four species. Hordeum cordobense showed little variation in crossability of interpopulation crosses and the F1-families had rather high fertility. A wide range in crossability between populations was observed in the three species H. chilense, H. muticum and H. stenostachys . Some combinations failed to set seed while others had high seed set. The fertility of the F1-- families varied from almost sterile to fully fertile. All parental plants, intra and interpopulation hybrids in the four species had very high meiotic pairing frequency with 12–14 chiasmata per cell. Hordeum cordobense is a homogeneous species while the other three species are heterogeneous and genetically diverse.  相似文献   

4.
Reproductive isolation is often variable within species, a phenomenon that while largely ignored by speciation studies, can be leveraged to gain insight into the potential mechanisms driving the evolution of genetic incompatibilities. We used experimental greenhouse crosses to characterize patterns of reproductive isolation among three divergent genetic lineages of Campanulastrum americanum that occur in close geographic proximity in the Appalachian Mountains. Substantial, asymmetrical reproductive isolation for survival due to cytonuclear incompatibility was found among the lineages (up to 94% reduction). Moderate reductions in pollen viability, as well as cytoplasmic male sterility, were also found between some Mountain populations. We then compared these results to previously established patterns of reproductive isolation between these Mountain lineages and a fourth, widespread Western lineage to fully characterize reproductive isolation across the complete geographic and genetic range of C. americanum. Reproductive isolation for survival and pollen viability was consistent across studies, indicating the evolution of the underlying genetic incompatibilities is primarily determined by intrinsic factors. In contrast, reproductive isolation for germination was only found when crossing Mountain populations with the Western lineage, suggesting the underlying genetic incompatibility is likely influenced by environmental or demographic differences between the two lineages. Cytoplasmic male sterility was also limited in occurrence, being restricted to a handful of Mountain populations in a narrow geographic range. These findings illustrate the complexity of speciation by demonstrating multiple, independent genetic incompatibilities that lead to a mosaic of genetic divergence and reproductive isolation across a species range.  相似文献   

5.
We examined the level of postzygotic reproductive isolation in F(1) and F(2) hybrids of reciprocal crosses between the Arabidopsis lyrata subspecies lyrata (North American) and petraea (European). Our main results are: first, the percentage of fertile pollen was significantly reduced in the F(1) and F(2) compared to the parental populations. Second, mean pollen fertility differed markedly between reciprocal crosses: 84% in the F(2) with ssp. lyrata cytoplasm and 61% in the F(2) with ssp. petraea cytoplasm. Third, 17% of the F(2) with ssp. petraea cytoplasm showed male sterility (produced less than 30 pollen grains in our subsample). The hybrids were female fertile. We used QTL mapping to find the genomic regions that determine pollen fertility and that restore cytoplasmic male sterility (CMS). In the F(2) with ssp. lyrata cytoplasm, an epistatic pair of QTLs was detected. In the reciprocal F(2) progeny, four QTLs demonstrated within-population polymorphism for hybrid male sterility. In addition, in the F(2) with ssp. petraea cytoplasm, there was a strong male fertility restorer locus on chromosome 2 where a cluster of CMS restorer gene-related PPR genes have been found in A. lyrata. Our results underline the importance of cytonuclear interactions in understanding genetics of the early stages of speciation.  相似文献   

6.
The interaction between rapidly evolving centromere sequences and conserved kinetochore machinery appears to be mediated by centromere-binding proteins. A recent theory proposes that the independent evolution of centromere-binding proteins in isolated populations may be a universal cause of speciation among eukaryotes. In Drosophila the centromere-specific histone, Cid (centromere identifier), shows extensive sequence divergence between D. melanogaster and the D. simulans clade, indicating that centromere machinery incompatibilities may indeed be involved in reproductive isolation and speciation. However, it is presently unclear whether the adaptive evolution of Cid was a cause of the divergence between these species, or merely a product of postspeciation adaptation in the separate lineages. Furthermore, the extent to which divergent centromere identifier proteins provide a barrier to reproduction remains unknown. Interestingly, a small number of rescue lines from both D. melanogaster and D. simulans can restore hybrid fitness. Through comparisons of cid sequence between nonrescue and rescue strains, we show that cid is not involved in restoring hybrid viability or female fertility. Further, we demonstrate that divergent cid alleles are not sufficient to cause inviability or female sterility in hybrid crosses. Our data do not dispute the rapid divergence of cid or the coevolution of centromeric components in Drosophila; however, they do suggest that cid underwent adaptive evolution after D. melanogaster and D. simulans diverged and, consequently, is not a speciation gene.  相似文献   

7.
C. P. Carroll 《Genetica》1975,45(2):149-162
When dihaploids of EuropeanSolanum tuberosum are used as female parents in crosses with South American cultivated diploid potatoes (Group Phureja/Stenotomum), various kinds and degrees of male sterility are found in the offspring. The effect of using different dihaploid and cultivated diploid parents on shrivelled microspore sterility of F1 hybrid progenies was studied. Variation in the character was continuous and statistical analyses showed high general combining ability for dihaploid parents but not for cultivated diploids. A significant but non-linear relationship was found between percent of stainable pollen and seed set in crosses with female tester parents, provided that some degree of functional male fertility was present. F1 clones with pollen of normal appearance but with no functional fertility probably represent a hitherto unclassified cytoplasmic male sterility. The results are discussed from the point of view of methods to be adopted in improving potatoes at the diploid level.  相似文献   

8.
Theory predicts that homoploid hybrid speciation will be facilitated by selfing, yet most well-documented hybrid species are outcrossers. One possible explanation for this puzzle is that conditions in hybrid populations may favor selfing, even in otherwise outcrossing species. For example, in self-incompatible plants, mixtures of self and interspecific pollen often induce selfing. Here, we examine patterns of mating in three hybrid zones and four “pure” populations of Helianthus annuus and H. petiolaris, wild, self-incompatible sunflower species that are thought to have parented three homoploid hybrid species. Fourteen to 16 maternal families from each pure population and 44–46 maternal families from each hybrid zone were analyzed for seven polymorphic isozyme loci. Maximum-likelihood (ML) methods were used to estimate multilocus outcrossing rates (Tm) and hybridization frequencies for each maternal family, each phenotypic group within each hybrid zone (annuus-like, hybrid, and petiolaris-like), and each population. As predicted for self-incompatible species, all four parental populations have outcrossing rate ML estimates of 1.0. Within the hybrid zones, outcrossing rates were lowest in the H. annuus–like fraction of the population (0.73, 0.72, and 0.74 in the three hybrid zones, respectively), largely intermediate in the H. petiolaris–like group (0.94, 0.90, and 0.94), and highest in the hybrid group (0.97, 0.93, and 0.97). Although outcrossing rates are lower in hybrid zones than in pure populations, it is unlikely that the observed decrease facilitates hybrid speciation because outcrossing rates in the critical hybrid fraction of the population do not differ significantly from 1.0. Dividing the outcrossed pollen pool into intraspecific and interspecific components revealed that maternal plants are largely fertilized by conspecific pollen, confirming an important role for pollen competition as a reproductive barrier. Highly sterile hybrid plants do not appear to discriminate between parental species pollen, but hybrids with higher fertility tend to be fertilized by pollen from the parental group they resemble genetically. Thus, gametic selection leads to substantial assortative mating in these hybrid zones.  相似文献   

9.
Although Trinidadian populations of the guppy, Poecilia reticulata, show considerable adaptive genetic differentiation, they have been assumed to show little or no reproductive isolation. We tested this assumption by crossing Caroni (Tacarigua River) and Oropuche (Oropuche R.) drainage populations from Trinidad's Northern Range, and by examining multiple aspects of reproductive compatibility in the F1, F2 and BC1 generations. In open-aquarium experiments, F1 males performed fewer numbers of mating behaviours relative to parental population controls. This is the first documentation of hybrid behavioural sterility within a species, and it suggests that such sterility may feasibly be involved in causing speciation. The crosses also uncovered hybrid breakdown for embryo viability, brood size and sperm counts. In contrast, no reductions in female fertility were detected, indicating that guppies obey Haldane's rule for sterility. Intrinsic isolation currently presents a much stronger obstacle to gene flow than behavioural isolation, and our results indicate that Trinidadian populations constitute a useful model for investigating incipient speciation.  相似文献   

10.
The renewed interest in the use of hybrid zones for studying speciation calls for the identification and study of hybrid zones across a wide range of organisms, especially in long-lived taxa for which it is often difficult to generate interpopulation variation through controlled crosses. Here, we report on the extent and direction of introgression between two members of the "model tree" genus Populus: Populus alba (white poplar) and Populus tremula (European aspen), across a large zone of sympatry located in the Danube valley. We genotyped 93 hybrid morphotypes and samples from four parental reference populations from within and outside the zone of sympatry for a genome-wide set of 20 nuclear microsatellites and eight plastid DNA restriction site polymorphisms. Our results indicate that introgression occurs preferentially from P. tremula to P. alba via P. tremula pollen. This unidirectional pattern is facilitated by high levels of pollen vs. seed dispersal in P. tremula (pollen/seed flow = 23.9) and by great ecological opportunity in the lowland floodplain forest in proximity to P. alba seed parents, which maintains gene flow in the direction of P. alba despite smaller effective population sizes (N(e)) in this species (P. alba N(e)c. 500-550; P. tremula N(e)c. 550-700). Our results indicate that hybrid zones will be valuable tools for studying the genetic architecture of the barrier to gene flow between these two ecologically divergent Populus species.  相似文献   

11.
Transgressive character expression in a hybrid sunflower species   总被引:2,自引:0,他引:2  
Diploid hybrid lineages often are ecologically distinct from their parental species. However, it is unclear whether this niche divergence is typically achieved via hybrid intermediacy, a mixture of parental traits, and/or the evolution of extreme (transgressive) morphological and ecophysiological features. Here we compare an extensively studied hybrid sunflower species, Helianthus anomalus, with its putative parents, H. annuus and H. petiolaris, for 41 morphological and 12 ecophysiological traits. Helianthus anomalus was morphologically intermediate for one trait (2.4%), parental-like for 23 traits (56.1%), and transgressive for 17 traits (41.5%). For ecophysiological traits, H. anomalus was not significantly different from one or both parents for nine traits (75%), and was transgressive for the remaining three (25%). Thus, H. anomalus appears to be a mosaic of parental-like and transgressive phenotypes. Although the fitness effects of the transgressive characters are not yet known, many of these characters are consistent with adaptations reported for other sand dune plants. Genetic studies are currently underway to ascertain whether these extreme characters arose as a direct byproduct of hybridization or whether they evolved via mutational divergence.  相似文献   

12.
Abstract Both chromosomal rearrangements and negative interactions among loci (Dobzhansky‐Muller incompatibilities) have been advanced as the genetic mechanism underlying the sterility of interspecific hybrids. These alternatives invoke very different evolutionary histories during speciation and also predict different patterns of sterility in artificial hybrids. Chromosomal rearrangements require drift, inbreeding, or other special conditions for initial fixation and, because heterozygosity per se generates any problems with gamete formation, F1 hybrids will be most infertile. In contrast, Dobzhansky‐Muller incompatibilities may arise as byproducts of adaptive evolution and often affect the segregating F2 generation most severely. To distinguish the effects of these two mechanisms early in divergence, we investigated the quantitative genetics of hybrid sterility in a line cross between two members of the Mimulus guttatus species complex (M. guttatus and M. nasutus). Hybrids showed partial male and female sterility, and the patterns of infertility were not consistent with the action of chromosomal rearrangements alone. F2 and F1 hybrids exhibited equal decreases in pollen viability (> 40%) relative to the highly fertile parental lines. A large excess of completely pollen‐sterile F2 genotypes also pointed to the segregation of Dobzhansky‐Muller incompatibility factors affecting male fertility. Female fertility showed a pattern similarly consistent with epistatic interactions: F2 hybrids produced far fewer seeds per flower than F1 hybrids (88.0 ± 2.8 vs. 162.9 ± 8.5 SE, respectively) and either parental line, and many F2 genotypes were completely female sterile. Dobzhansky‐Muller interactions also resulted in the breakdown of several nonreproductive characters and appear to contribute to correlations between male and female fertility in the F2 generation. These results parallel and contrast with the genetics of postzygotic isolation in model animal systems and are a first step toward understanding the process of speciation in this well‐studied group of flowering plants.  相似文献   

13.
The success or failure of interspecific crosses is vital to evolution and to agriculture, but much remains to be learned about the nature of hybridization barriers. Several mechanisms have been proposed to explain postzygotic barriers, including negative interactions between diverged sequences, global genome rearrangements, and widespread epigenetic reprogramming. Another explanation is imbalance of paternally and maternally imprinted genes in the endosperm. Interspecific crosses between diploid Arabidopsis thaliana as the seed parent and tetraploid Arabidopsis arenosa as the pollen parent produced seeds that aborted with the same paternal excess endosperm phenotype seen in crosses between diploid and hexaploid A. thaliana. Doubling maternal ploidy restored seed viability and normal endosperm morphology. However, substituting a hypomethylated tetraploid A. thaliana seed parent reestablished the hybridization barrier by causing seed abortion and a lethal paternal excess phenotype. We conclude from these findings that the dominant cause of seed abortion in the diploid A. thaliana x tetraploid A. arenosa cross is parental genomic imbalance. Our results also demonstrate that manipulation of DNA methylation can be sufficient to erect hybridization barriers, offering a potential mechanism for speciation and a means of controlling gene flow between species.  相似文献   

14.
Pollen fertility was determined for synthetic F1 hybrids between members of the genus Tolpis endemic to the Canary Islands. Mean fertility varies from 1 to nearly 100%. High hybrid sterility is unusual for island lineages. Surprisingly, the fertility of hybrids between morphologically distinct species was generally higher than some crosses within the morphologically variable group that includes the Tolpis laciniata and T. lagopoda complexes. Within this group, fertility was lower particularly in hybrids involving one recognized segregate species (T. webbii), but none of the four potentially new species had reduced hybrid fertility. Despite the overall fertility differences between groupings within the T. laciniata and T. lagopoda complexes there is variation in fertility within groups; sterility factors have a complex inter-populational distribution. The cause of hybrid sterility is unknown, but preliminary data suggest that both chromosomal and genetic factors are involved.  相似文献   

15.
The intersubspecific hybrids of autotetraploid rice has many features that increase rice yield, but lower seed set is a major hindrance in its utilization. Pollen sterility is one of the most important factors which cause intersubspecific hybrid sterility. The hybrids with greater variation in seed set were used to study how the F(1) pollen sterile loci (S-a, S-b, and S-c) interact with each other and how abnormal chromosome behaviour and allelic interaction of F(1) sterility loci affect pollen fertility and seed set of intersubspecific autotetraploid rice hybrids. The results showed that interaction between pollen sterility loci have significant effects on the pollen fertility of autotetraploid hybrids, and pollen fertility further decreased with an increase in the allelic interaction of F(1) pollen sterility loci. Abnormal ultra-structure and microtubule distribution patterns during pollen mother cell (PMC) meiosis were found in the hybrids with low pollen fertility in interphase and leptotene, suggesting that the effect-time of pollen sterility loci interaction was very early. There were highly significant differences in the number of quadrivalents and bivalents, and in chromosome configuration among all the hybrids, and quadrivalents decreased with an increase in the seed set of autotetraploid hybrids. Many different kinds of chromosomal abnormalities, such as chromosome straggling, chromosome lagging, asynchrony of chromosome disjunction, and tri-fission were found during the various developmental stages of PMC meiosis. All these abnormalities were significantly higher in sterile hybrids than in fertile hybrids, suggesting that pollen sterility gene interactions tend to increase the chromosomal abnormalities which cause the partial abortion of male gametes and leads to the decline in the seed set of the autotetraploid rice hybrids.  相似文献   

16.
Pollen-tube growth and seed siring ability were measured in crosses between the Louisiana iris species Iris fulva and Iris hexagona and their F1 and F2 hybrids. Flowers of the parental species were pollinated with self, outcross intraspecific, and interspecific pollen. Pollen-tube lengths were similar for all three pollen types in I. fulva, but in I. hexagona interspecific pollen tubes were longer than intraspecific pollen tubes. Pollen-tube lengths also differed for F1 and F2 flowers pollinated with I. fulva, I. hexagona, and hybrid pollen. For both hybrid classes I. fulva pollen tubes were the shortest while pollen tubes from I. hexagona and hybrids grew the furthest. Mixtures of genetically marked pollen were used to assess the seed siring ability of intra- and interspecific pollen in the parental species by varying the proportion of each pollen type in a replacement series design. For both species, the observed proportions of hybrid seeds were lower than the expected based on the frequency of each pollen type in the mixtures across all treatments. Flowers of I. fulva produced less than 10% hybrid progeny even when 75% of the pollen applied to stigmas was derived from interspecific flowers. The frequency of hybrid seed formation was somewhat greater in I. hexagona, but was still significantly lower than expected across all mixture treatments. Seed set per fruit remained constant across the mixture treatments for both species, but in I. fulva fruit set decreased with an increase in the proportion of interspecific pollen. The data indicate that both pre- and postfertilization processes contribute to discrimination against hybrid seed formation.  相似文献   

17.
Despite extensive theory, little is known about the empirical accumulation and evolutionary timing of mutations that contribute to speciation. Here we combined QTL (Quantitative Trait Loci) analyses of reproductive isolation, with information on species evolutionary relationships, to reconstruct the order and timing of mutations contributing to reproductive isolation between three plant (Solanum) species. To evaluate whether reproductive isolation QTL that appear to coincide in more than one species pair are homologous, we used cross-specific tests of allelism and found evidence for both homologous and lineage-specific (non-homologous) alleles at these co-localized loci. These data, along with isolation QTL unique to single species pairs, indicate that >85% of isolation-causing mutations arose later in the history of divergence between species. Phylogenetically explicit analyses of these data support non-linear models of accumulation of hybrid incompatibility, although the specific best-fit model differs between seed (pairwise interactions) and pollen (multi-locus interactions) sterility traits. Our findings corroborate theory that predicts an acceleration (‘snowballing’) in the accumulation of isolation loci as lineages progressively diverge, and suggest different underlying genetic bases for pollen versus seed sterility. Pollen sterility in particular appears to be due to complex genetic interactions, and we show this is consistent with a snowball model where later arising mutations are more likely to be involved in pairwise or multi-locus interactions that specifically involve ancestral alleles, compared to earlier arising mutations.  相似文献   

18.
Hybridization between divergent lineages has long been assumed to give rise to unfavorable interactions between the parental genomes. These deleterious genetic interactions are further assumed to result in the production of hybrid offspring with decreased levels of viability and/or fertility. To test this assumption, we investigated the role of both nuclear and cytonuclear epistatic interactions in determining the frequencies of F2 genotypes produced in crosses between two species of Louisiana iris, Iris fulva and I. brevicaulis. Overall, these crosses revealed a significant deficit of intermediate hybrid genotypes accompanied by an excess of parental-like genotypes, suggesting that genetic interactions may promote postmating reproductive isolation between these species. However, analyses of single and multilocus segregation patterns revealed a variety of negative and positive interactions between the genomes of the parental taxa at the nuclear and cytonuclear levels. Taken together, these results indicate that the traditional view that interactions between divergent genomes are always deleterious is an oversimplification. Rather, it seems likely that crosses between divergent lineages can lead to the production of both fit and unfit hybrid genotypes.  相似文献   

19.
Systematic characterization of genetic and molecular mechanisms in the formation of hybrid sterility is of fundamental importance in understanding reproductive isolation and speciation. Using ultra‐high‐density genetic maps, 43 single‐locus quantitative trait loci (QTLs) and 223 digenic interactions for embryo‐sac, pollen, and spikelet fertility are depicted from three crosses between representative varieties of japonica and two varietal groups of indica, which provide an extensive archive for investigating the genetic basis of reproductive isolation in rice. Ten newly detected single‐locus QTLs for inter‐ and intra‐subspecific fertility are identified. Three loci for embryo‐sac fertility are detected in both Nip × ZS97 and Nip × MH63 crosses, whereas QTLs for pollen fertility are not in common between the two crosses thus leading to fertility variation. Five loci responsible for fertility and segregation distortion are observed in the ZS97 × MH63 cross. The importance of two‐locus interactions on fertility are quantified in the whole genome, which identify that three types of interaction contribute to fertility reduction in the hybrid. These results construct the genetic architecture with respect to various forms of reproductive barriers in rice, which have significant implications in utilization of inter‐subspecific heterosis along with improvement in the fertility of indica–indica hybrids at single‐ and multi‐locus level.  相似文献   

20.
Hybrid sterility is an important species barrier, especially in plants where hybrids can often form between divergent taxa. Here we explore how life history affects the acquisition of hybrid sterility in two groups in the sunflower family. We analyzed genetic distance and F1 pollen sterility for interspecific crosses in annual and perennial groups. We find that reproductive isolation is acquired in a steady manner and that annual species acquire hybrid sterility barriers faster than perennial species. Potential causes of the observed sterility pattern are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号