首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High- and low-molecular-mass microbial surfactants   总被引:36,自引:0,他引:36  
Microorganisms synthesize a wide variety of high- and low-molecular-mass bioemulsifiers. The low-molecular-mass bioemulsifiers are generally glycolipids, such as trehalose lipids, sophorolipids and rhamnolipids, or lipopeptides, such as surfactin, gramicidin S and polymyxin. The high-molecular-mass bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins or complex mixtures of these biopolymers. The low-molecular-mass bioemulsifiers lower surface and interfacial tensions, whereas the higher-molecular-mass bioemulsifiers are more effective at stabilizing oil-in-water emulsions. Three natural roles for bioemulsifiers have been proposed: (i) increasing the surface area of hydrophobic water-insoluble growth substrates; (ii) increasing the bioavailability of hydrophobic substrates by increasing their apparent solubility or desorbing them from surfaces; (iii) regulating the attachment and detachment of microorganisms to and from surfaces. Bioemulsifiers have several important advantages over chemical surfactants, which should allow them to become prominent in industrial and environmental applications. The potential commercial applications of bioemulsifiers include bioremediation of oil-polluted soil and water, enhanced oil recovery, replacement of chlorinated solvents used in cleaning-up oil-contaminated pipes, vessels and machinery, use in the detergent industry, formulations of herbicides and pesticides and formation of stable oil-in-water emulsions for the food and cosmetic industries. Received: 21 December 1998 / Received revision: 11 March 1999 / Accepted: 14 March 1999  相似文献   

2.
N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces.  相似文献   

3.
4.
The role that bacterial surface hydrophobicity (surface tension) plays in determining the extent of adhesion of polymer substrates and phagocytic ingestion is reviewed. The early attachment phase in bacterial adhesion is shown to depend critically on the relative surface tensions of the three interacting phases; i.e., bacteria, substrate, and suspending liquid surface tension. When suspended in a liquid with a high surface tension such as Hanks balanced salt solution, the most hydrophobic bacteria adhere to all surfaces to the greatest extent. When the liquid surface tension (gamma LV) is larger than the bacterial surface tension (gamma BV), then for any single bacterial species the extent of adhesion decreases with increasing substrate surface tension (gamma SV). When gamma LV less than gamma BV then adhesion increases with increasing gamma SV. Bacterial surface tension also determines in part the extent of phagocytic ingestion and the degree to which antibodies specifically adsorb onto the bacterium resulting in opsonization. The nonspecific adsorption of antibodies results in a considerable modification in the surface properties of the bacteria. Bacterial surface hydrophobicity can be altered significantly through exposure to subinhibitory concentrations of antibiotics, surfactants, lectins, etc. The effect of these changes on subsequent phagocytic ingestion is discussed.  相似文献   

5.
Several years ago, it was observed that sterile microbial membrane preparations stimulated recovery of certain radiation-injured bacteria. Later it was noted that these same preparations reduce dissolved oxygen to water in a variety of environments, including bacteriological media. This reduction of oxygen is an enzymatic process and is influenced by parameters such as temperature, pH, and the availability of specific oxidizable substrates. Oxygenreducing membrane preparations can be made from several different bacterial species. When added to liquid or solid bacteriological media, membrane preparations rapidly produce and maintain anaerobic conditions favorable for the growth of a wide variety of oxygen-sensitive microorganisms. When used with a specifically designed disposable dish, membrane preparations allow the development of colonies of many anaerobic microorganisms on the surface of agar without the use of anaerobic hoods or other devices. In addition to providing conditions suitable for the growth of anaerobes, membrane preparations stimulate recovery of heat and cold injured bacteria of several different genera including facultative organisms. These results are reminiscent of the early observations regarding the recovery of radiation-injured bacteria. In addition to their usefulness in microbiology, oxygen-reducing membrane preparations have the potential for protecting a wide variety of oxygen-sensitive organic compounds.  相似文献   

6.
Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces.  相似文献   

7.
AIMS: In recent years, interest has been growing in the search for novel bioemulsifiers. Many bacterial genera including Acinetobacter have been reported to produce bioemulsifiers. The present study aims to screen Acinetobacter isolates from healthy human skin for bioemulsifier production. Methods and Results: Acinetobacter junii SC14 produced maximum bioemulsifier in the presence of almond oil during stationary growth phase at 37 degrees C and pH 7.2. Partially purified, nondialysable bioemulsifier from SC14 was a proteoglycan. The protein and polysaccharide fractions resulted in 95.2% reconstitution of the emulsification activity. The role of esterase in the release of cell-bound emulsifier and the contribution of capsular polysaccharide to the emulsification activity were observed. CONCLUSION: Acinetobacter strains from human skin exhibited better emulsification activity than that by burn wound or soil isolates, owing to the inherent differences in chemical microenvironment of their habitats. SIGNIFICANCE AND IMPACT OF THE STUDY: Investigation of skin commensals, especially acinetobacters, would lead to the discovery of novel bioemulsifiers with interesting properties. Attempts of screening and strain improvement directed towards skin commensals will open up new avenues for strains producing bioemulsifier on a commercial scale.  相似文献   

8.
Gram-negative bacteria express a wide variety of organelles on their cell surface. These surface structures may be the end products of secretion systems, such as the hair-like fibers assembled by the chaperone/usher (CU) and type IV pilus pathways, which generally function in adhesion to surfaces and bacterial-bacterial and bacterial-host interactions. Alternatively, the surface organelles may be integral components of the secretion machinery itself, such as the needle complex and pilus extensions formed by the type III and type IV secretion systems, which function in the delivery of bacterial effectors inside host cells. Bacterial surface structures perform functions critical for pathogenesis and have evolved to withstand forces exerted by the external environment and cope with defenses mounted by the host immune system. Given their essential roles in pathogenesis and exposed nature, bacterial surface structures also make attractive targets for therapeutic intervention. This review will describe the structure and function of surface organelles assembled by four different Gram-negative bacterial secretion systems: the CU pathway, the type IV pilus pathway, and the type III and type IV secretion systems.  相似文献   

9.
Machado I  Graça J  Sousa AM  Lopes SP  Pereira MO 《Biofouling》2011,27(10):1151-1159
Antimicrobial residue deposition can change the physico-chemical properties of bacteria and surfaces and thus promote or impair bacterial adhesion. This study focuses on benzalkonium chloride (BC) deposition on polystyrene (PS) surfaces and the influence of this conditioning film on the physico-chemical properties of PS and on early adhesion and biofilm formation by Pseudomonas aeruginosa wild-type and its laboratory BC-adapted strain. The latter readily acquired the ability to grow in BC, and also exhibited physico-chemical surface changes. The existence of residues on PS surfaces altered their hydrophobicity and favoured adhesion as determined by the free energy and early adhesion characterization. Adapted bacteria revealed a higher ability to adhere to surfaces and to develop biofilms, especially on BC-conditioned surfaces, which thereby could enhance resistance to sanitation attempts. These findings highlight the importance of investigations concerning the antimicrobial deposition effect after cleaning procedures, which may encourage bacterial adhesion, especially of bacteria that have been previously exposed to chemical stresses.  相似文献   

10.
Three bacterial strains isolated from waste crude oil were selected due to their capacity of growing in the presence of hydrocarbons and production of bioemulsifier. The genetic identification (PCR of the 16S rDNA gene using fD1 and rD1 primers) of these strains showed their affiliation to Bacillus subtilis, Alcaligenes faecalis and Enterobacter sp. These strains were able to emulsify n-octane, toluene, xylene, mineral oils and crude oil, look promising for bioremediation application. Finally, chemical composition, emulsifying activity and surfactant activity of the biopolymers produced by the selected strains were studies under different culture conditions. Our results showed that chemical and functional properties of the bioemulsifiers were affected by the carbon source added to the growth media.  相似文献   

11.
Antimicrobial residue deposition can change the physico-chemical properties of bacteria and surfaces and thus promote or impair bacterial adhesion. This study focuses on benzalkonium chloride (BC) deposition on polystyrene (PS) surfaces and the influence of this conditioning film on the physico-chemical properties of PS and on early adhesion and biofilm formation by Pseudomonas aeruginosa wild-type and its laboratory BC-adapted strain. The latter readily acquired the ability to grow in BC, and also exhibited physico-chemical surface changes. The existence of residues on PS surfaces altered their hydrophobicity and favoured adhesion as determined by the free energy and early adhesion characterization. Adapted bacteria revealed a higher ability to adhere to surfaces and to develop biofilms, especially on BC-conditioned surfaces, which thereby could enhance resistance to sanitation attempts. These findings highlight the importance of investigations concerning the antimicrobial deposition effect after cleaning procedures, which may encourage bacterial adhesion, especially of bacteria that have been previously exposed to chemical stresses.  相似文献   

12.
细菌生物被膜(biofilm)附着在生物或者非生物表面,由细菌及其分泌的糖、蛋白质和核酸等多种基质组成的细菌群落,是造成病原细菌持续性感染、毒力和耐药性的重要原因之一.细菌的生物被膜基质由复杂的胞外聚合物(extracellular polymeric substances,EPS)构成,影响生物被膜的结构和功能.本文...  相似文献   

13.
荚膜是一些细菌所具有的表层结构,与多种疾病有着密切联系。细菌荚膜多糖不仅结构复杂,而且在免疫活性方面发挥着重要的作用。同一种细菌根据其荚膜多糖的抗原性不同可分为不同的血清型,不同血清型细菌荚膜多糖的化学结构也存在差异。以荚膜多糖为基础的疫苗正在积极研究开发当中,对不同致病细菌荚膜多糖具体化学结构的掌握是疫苗得到许可的必备条件之一。本文对致病细菌荚膜多糖的化学结构进行了归纳和总结,以期为荚膜多糖的化学结构研究和疫苗开发提供参考。  相似文献   

14.
Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanometer scale. For AFM, bacterial cells need to be firmly anchored to a substratum surface in order to withstand the friction forces from the silicon nitride tip. Different strategies for the immobilization of bacteria have been described in the literature. This paper compares AFM interaction forces obtained between Klebsiella terrigena and silicon nitride for three commonly used immobilization methods, i.e., mechanical trapping of bacteria in membrane filters, physical adsorption of negatively charged bacteria to a positively charged surface, and glutaraldehyde fixation of bacteria to the tip of the microscope. We have shown that different sample preparation techniques give rise to dissimilar interaction forces. Indeed, the physical adsorption of bacterial cells on modified substrata may promote structural rearrangements in bacterial cell surface structures, while glutaraldehyde treatment was shown to induce physicochemical and mechanical changes on bacterial cell surface properties. In general, mechanical trapping of single bacterial cells in filters appears to be the most reliable method for immobilization.  相似文献   

15.
Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanometer scale. For AFM, bacterial cells need to be firmly anchored to a substratum surface in order to withstand the friction forces from the silicon nitride tip. Different strategies for the immobilization of bacteria have been described in the literature. This paper compares AFM interaction forces obtained between Klebsiella terrigena and silicon nitride for three commonly used immobilization methods, i.e., mechanical trapping of bacteria in membrane filters, physical adsorption of negatively charged bacteria to a positively charged surface, and glutaraldehyde fixation of bacteria to the tip of the microscope. We have shown that different sample preparation techniques give rise to dissimilar interaction forces. Indeed, the physical adsorption of bacterial cells on modified substrata may promote structural rearrangements in bacterial cell surface structures, while glutaraldehyde treatment was shown to induce physicochemical and mechanical changes on bacterial cell surface properties. In general, mechanical trapping of single bacterial cells in filters appears to be the most reliable method for immobilization.  相似文献   

16.
The reduction of bacterial biofilm formation on stainless steel surfaces by N-acetyl-L-cysteine (NAC) is attributed to effects on bacterial growth and polysaccharide production, as well as an increase in the wettability of steel surfaces. In this report, we show that NAC-coated stainless steel and polystyrene surfaces affect both the initial adhesion of Bacillus cereus and Bacillus subtilis and the viscoelastic properties of the interaction between the adhered bacteria and the surface. A quartz crystal microbalance with dissipation was shown to be a powerful and sensitive technique for investigating changes in the applied NAC coating for initial cell surface interactions of bacteria. The kinetics of frequency and dissipation shifts were dependent on the bacteria, the life cycle stage of the bacteria, and the surface. We found that exponentially grown cells gave rise to a positive frequency shift as long as their cell surface hydrophobicity was zero. Furthermore, when the characteristics of binding between the cell and the surface for different growth phases were compared, the rigidity increased from exponentially grown cells to starved cells. There was a trend in which an increase in the viscoelastic properties of the interaction, caused by the NAC coating on stainless steel, resulted in a reduction in irreversibly adhered cells. Interestingly, for B. cereus that adhered to polystyrene, the viscoelastic properties decreased, while there was a reduction in adhered cells, regardless of the life cycle stage. Altogether, NAC coating on surfaces was often effective and could both decrease the initial adhesion and increase the detachment of adhered cells and spores. The most effective reduction was found for B. cereus spores, for which the decrease was caused by a combination of these two parameters.  相似文献   

17.
The competing mechanisms that regulate adhesion of bacteria to surfaces and subsequent biofilm formation remain unclear, though nearly all studies have focused on the role of physical and chemical properties of the material surface. Given the large monetary and health costs of medical-device colonization and hospital-acquired infections due to bacteria, there is considerable interest in better understanding of material properties that can limit bacterial adhesion and viability. Here we employ weak polyelectrolyte multilayer (PEM) thin films comprised of poly(allylamine) hydrochloride (PAH) and poly(acrylic acid) (PAA), assembled over a range of conditions, to explore the physicochemical and mechanical characteristics of material surfaces controlling adhesion of Staphylococcus epidermidis bacteria and subsequent colony growth. Although it is increasingly appreciated that eukaryotic cells possess subcellular structures and biomolecular pathways to sense and respond to local chemomechanical environments, much less is known about mechanoselective adhesion of prokaryotes such as these bacteria. We find that adhesion of viable S. epidermidis correlates positively with the stiffness of these polymeric substrata, independently of the roughness, interaction energy, and charge density of these materials. Quantitatively similar trends observed for wild-type and actin analogue mutant Escherichia coli suggest that these results are not confined to only specific bacterial strains, shapes, or cell envelope types. These results indicate the plausibility of mechanoselective adhesion mechanisms in prokaryotes and suggest that mechanical stiffness of substrata materials represents an additional parameter that can regulate adhesion of and subsequent colonization by viable bacteria.  相似文献   

18.
Microbial bioemulsifiers are secreted by many bacteria and are important for bacterial interactions with hydrophobic substrates or nutrients and for a variety of biotechnological applications. We have recently shown that the OmpA protein in several members of the Acinetobacter family has emulsifying properties. These properties of OmpA depend on the amino acid composition of four putative extra-membrane loops, which in various strains of Acinetobacter, but not in E. coli, are highly hydrophobic. As many Acinetobacter strains can utilize hydrophobic carbon sources, such as oil, the emulsifying activity of their OmpA may be important for the utilization and uptake of hydrocarbons. We assumed that if outer membrane proteins with emulsifying activity are physiologically important, they may exist in additional oil degrading bacteria. In order to identify such proteins, it was necessary to obtain bioinformatics-based predictions for hydrophobic extra-membrane loops. Here we describe a method for using protein sequence data for predicting the hydrophobic properties of the extra-membrane loops of outer membrane proteins. The feasibility of this method is demonstrated by its use to identify a new microbial bioemulsifier - OprG - an outer membrane protein of the oil degrading Pseudomonas putida KT2440.  相似文献   

19.
The plant rhizosphere is an important soil ecological environment for plant-microorganism interactions, which include colonization by a variety of microorganisms in and around the roots that may result in symbiotic, endophytic, associative, or parasitic relationships within the plant, depending on the type of microorganisms, soil nutrient status, and soil environment. Rhizosphere competence may be attributable to the differences in the extent of bacterial attachment to the root surface. We present results of the effect of various factors on the attachment to bean (Phaseolus vulgaris) and soybean (Glycine max) roots of some bacterial species of agronomic importance, such as Rhizobium tropici, Rhizobium etli, Ensifer fredii (homotypic synonym Sinorhizobium fredii), and Azospirillum brasilense; as well as the attachment capability of the plant growth promoting rhizobacteria Pseudomonas fluorescens and Chryseobacterium balustinum. Additionally, we have studied various bacterial traits, such as autoaggregation and flagella movements, which have been postulated to be important properties for bacterial adhesion to surfaces. The lack of mutual incompatibility between rhizobial strains and C. balustinum has been demonstrated in coinoculation assays.  相似文献   

20.
Summary Rare earth metal cations are antibacterially synergistic with anionic surfactants, yielding mixtures that have bactericidal activity against a variety of gram-positive and gram-negative bacteria at minimum concentrations ranging from 16 to 125 g/ml. Uptake of surfactant byEscherichia coli increases in the presence of lanthanum, suggesting that the role of rare earth metal cations is to reduce the net negative surface charge on the bacteria, thereby increasing the affinity between the negatively charged surfactant and the bacterial surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号