首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3′-Untranslated region (UTR) shortening of mRNAs via alternative polyadenylation (APA) has important ramifications for gene expression. By using proximal APA sites and switching to shorter 3′-UTRs, proliferating cells avoid miRNA-mediated repression. Such APA and 3′-UTR shortening events may explain the basis of some of the proto-oncogene activation cases observed in cancer cells. In this study, we investigated whether 17 β-estradiol (E2), a potent proliferation signal, induces APA and 3′-UTR shortening to activate proto-oncogenes in estrogen receptor positive (ER+) breast cancers. Our initial probe based screen of independent expression arrays suggested upregulation and 3′-UTR shortening of an essential regulator of DNA replication, CDC6 (cell division cycle 6), upon E2 treatment. We further confirmed the E2- and ER-dependent upregulation and 3′UTR shortening of CDC6, which lead to increased CDC6 protein levels and higher BrdU incorporation. Consequently, miRNA binding predictions and dual luciferase assays suggested that 3′-UTR shortening of CDC6 was a mechanism to avoid 3′-UTR-dependent negative regulations. Hence, we demonstrated CDC6 APA induction by the proliferative effect of E2 in ER+ cells and provided new insights into the complex regulation of APA. E2-induced APA is likely to be an important but previously overlooked mechanism of E2-responsive gene expression.  相似文献   

2.
3.
Phosphoglycerate kinase 2 (PGK2) is a germ cell-specific protein whose mRNA is translationally regulated in the mammalian testis. Using RNA affinity chromatography with the 3′-untranslated region (UTR) of Pgk2 mRNA and adult testis extracts, several associated proteins including a novel isoform of the AU-rich element RNA-binding protein and KH-type splicing regulatory protein (KSRP) were identified. KSRP, a protein of ~75 kDa, is widely expressed in somatic and germ cells where it is primarily nuclear. In addition to the ~75-kDa KSRP, a ~52-kD KSRP, t-KSRP, is present in the cytoplasm of a subpopulation of germ cells. t-KSRP binds directly to a 93-nt sequence (designated the F1 region) of the 3′-UTR of the Pgk2 mRNA and destabilizes Pgk2 mRNA constructs in testis extracts and in transfected cells. We conclude that this testicular variant of the multifunctional nucleic acid–binding protein, KSRP, serves as a decay-promoting factor for Pgk2 mRNA in male germ cells.  相似文献   

4.
5.
6.
Enterovirus 71 (EV71) is one causative agent of hand, foot, and mouth disease (HFMD), which may lead to severe neurological disorders and mortality in children. EV71 genome is a positive single-stranded RNA containing a single open reading frame (ORF) flanked by 5′-untranslated region (5′UTR) and 3′UTR. The 5′UTR is fundamentally important for virus replication by interacting with cellular proteins. Here, we revealed that poly(C)-binding protein 1 (PCBP1) specifically binds to the 5′UTR of EV71. Detailed studies indicated that the RNA-binding K-homologous 1 (KH1) domain of PCBP1 is responsible for its binding to the stem-loop I and IV of EV71 5′UTR. Interestingly, we revealed that PCBP1 is distributed in the nucleus and cytoplasm of uninfected cells, but mainly localized in the cytoplasm of EV71-infected cells due to interaction and co-localization with the viral RNA. Furthermore, sub-cellular distribution analysis showed that PCBP1 is located in ER-derived membrane, in where virus replication occurred in the cytoplasm of EV71-infected cells, suggesting PCBP1 is recruited in a membrane-associated replication complex. In addition, we found that the binding of PCBP1 to 5′UTR resulted in enhancing EV71 viral protein expression and virus production so as to facilitate viral replication. Thus, we revealed a novel mechanism in which PCBP1 as a positive regulator involved in regulation of EV71 replication in the host specialized membrane-associated replication complex, which provides an insight into cellular factors involved in EV71 replication.  相似文献   

7.

Background

During zebrafish embryogenesis, microRNA (miRNA) miR-430 contributes to restrict Nanos1 and TDRD7 to primordial germ cells (PGCs) by inducing mRNA deadenylation, mRNA degradation, and translational repression of nanos1 and tdrd7 mRNAs in somatic cells. The nanos1 and tdrd7 3′UTRs include cis-acting elements that allow activity in PGCs even in the presence of miRNA-mediated repression.

Methodology/Principal Findings

Using a GFP reporter mRNA that was fused with tdrd7 3′UTR, we show that a germline-specific RNA-binding protein DAZ-like (DAZL) can relieve the miR-430-mediated repression of tdrd7 mRNA by inducing poly(A) tail elongation (polyadenylation) in zebrafish. We also show that DAZL enhances protein synthesis via the 3′UTR of dazl mRNA, another germline mRNA targeted by miR-430.

Conclusions/Significance

Our present study indicated that DAZL acts as an “anti-miRNA factor” during vertebrate germ cell development. Our data also suggested that miRNA-mediated regulation can be modulated on specific target mRNAs through the poly(A) tail control.  相似文献   

8.
Protein synthesis is tightly controlled by assembly of an intricate ribonucleoprotein complex at the m7GTP-cap on eukaryotic mRNAs. Ensuing linear scanning of the 5′ untranslated region (UTR) is believed to transfer the preinitiation complex to the initiation codon. Eukaryotic mRNAs are characterized by significant 5′ UTR heterogeneity, raising the possibility of differential control of translation initiation rate at individual mRNAs. Curiously, many mRNAs with unconventional, highly structured 5′ UTRs encode proteins with central biological roles in growth control, metabolism, or stress response. The 5′ UTRs of such mRNAs may influence protein synthesis rate in multiple ways, but most significantly they have been implicated in mediating alternative means of translation initiation. Cap-independent initiation bypasses strict control over the formation of initiation intermediates at the m7GTP cap. However, the molecular mechanisms that favor alternative means of ribosome recruitment are not understood. Here we provide evidence that eukaryotic initiation factor (eIF) 4G controls cap-independent translation initiation at the c-myc and vascular endothelial growth factor (VEGF) 5′ UTRs in vivo. Cap-independent translation was investigated in tetracycline-inducible cell lines expressing either full-length eIF4G or a C-terminal fragment (Ct) lacking interaction with eIF4E and poly(A) binding protein. Expression of Ct, but not intact eIF4G, potently stimulated cap-independent initiation at the c-myc/VEGF 5′ UTRs. In vitro RNA-binding assays suggest that stimulation of cap-independent translation initiation by Ct is due to direct association with the c-myc/VEGF 5′ UTR, enabling 43S preinitiation complex recruitment. Our work demonstrates that variant translation initiation factors enable unconventional translation initiation at mRNA subsets with distinct structural features.  相似文献   

9.
10.
11.
12.
Mitogen-activated protein kinase (MAPK) and PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins control many cellular processes critical for animal development and tissue homeostasis. In the present work, we report that PUF proteins act directly on MAPK/ERK-encoding mRNAs to downregulate their expression in both the Caenorhabditis elegans germline and human embryonic stem cells. In C. elegans, FBF/PUF binds regulatory elements in the mpk-1 3′ untranslated region (3′ UTR) and coprecipitates with mpk-1 mRNA; moreover, mpk-1 expression increases dramatically in FBF mutants. In human embryonic stem cells, PUM2/PUF binds 3′UTR elements in both Erk2 and p38α mRNAs, and PUM2 represses reporter constructs carrying either Erk2 or p38α 3′ UTRs. Therefore, the PUF control of MAPK expression is conserved. Its biological function was explored in nematodes, where FBF promotes the self-renewal of germline stem cells, and MPK-1 promotes oocyte maturation and germ cell apoptosis. We found that FBF acts redundantly with LIP-1, the C. elegans homolog of MAPK phosphatase (MKP), to restrict MAPK activity and prevent apoptosis. In mammals, activated MAPK can promote apoptosis of cancer cells and restrict stem cell self-renewal, and MKP is upregulated in cancer cells. We propose that the dual negative regulation of MAPK by both PUF repression and MKP inhibition may be a conserved mechanism that influences both stem cell maintenance and tumor progression.  相似文献   

13.
14.
15.
16.
17.
18.
Induction of cell proliferation requires a concomitant increase in the synthesis of glycosylated lipids and membrane proteins, which is dependent on ER-Golgi protein transport by CopII-coated vesicles. In this process, retrograde transport of ER resident proteins from the Golgi is crucial to maintain ER integrity, and allows for anterograde transport to continue. We previously showed that expression of the CopI specific SNARE protein Use1 (Unusual SNARE in the ER 1) is tightly regulated by eIF4E-dependent translation initiation of Use1 mRNA. Here we investigate the mechanism that controls Use1 mRNA translation. The 5′UTR of mouse Use1 contains a 156 nt alternatively spliced intron. The non-spliced form is the predominantly translated mRNA. The alternatively spliced sequence contains G-repeats that bind the RNA-binding protein G-rich sequence binding factor 1 (Grsf1) in RNA band shift assays. The presence of these G-repeats rendered translation of reporter constructs dependent on the Grsf1 concentration. Down regulation of either Grsf1 or Use1 abrogated expansion of erythroblasts. The 5′UTR of human Use1 lacks the splice donor site, but contains an additional upstream open reading frame in close proximity of the translation start site. Similar to mouse Use1, also the human 5′UTR contains G-repeats in front of the start codon. In conclusion, Grsf1 controls translation of the SNARE protein Use1, possibly by positioning the 40S ribosomal subunit and associated translation factors in front of the translation start site.  相似文献   

19.
20.
Host factors play crucial roles in the replication of plus-strand RNA viruses. In this report, a heat shock protein 90 homologue of Nicotiana benthamiana, NbHsp90, was identified in association with partially purified replicase complexes from BaMV-infected tissue, and shown to specifically interact with the 3′ untranslated region (3′ UTR) of BaMV genomic RNA, but not with the 3′ UTR of BaMV-associated satellite RNA (satBaMV RNA) or that of genomic RNA of other viruses, such as Potato virus X (PVX) or Cucumber mosaic virus (CMV). Mutational analyses revealed that the interaction occurs between the middle domain of NbHsp90 and domain E of the BaMV 3′ UTR. The knockdown or inhibition of NbHsp90 suppressed BaMV infectivity, but not that of satBaMV RNA, PVX, or CMV in N. benthamiana. Time-course analysis further revealed that the inhibitory effect of 17-AAG is significant only during the immediate early stages of BaMV replication. Moreover, yeast two-hybrid and GST pull-down assays demonstrated the existence of an interaction between NbHsp90 and the BaMV RNA-dependent RNA polymerase. These results reveal a novel role for NbHsp90 in the selective enhancement of BaMV replication, most likely through direct interaction with the 3′ UTR of BaMV RNA during the initiation of BaMV RNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号