共查询到20条相似文献,搜索用时 15 毫秒
1.
This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non‐invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH‐sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH‐sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole‐root tissues of A. thaliana is reported. The utility of pH‐sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated. 相似文献
2.
The actin cytoskeleton coordinates numerous cellular processes required for plant development. The functions of this network are intricately linked to its dynamic arrangement, and thus progress in understanding how actin orchestrates cellular processes relies on critical evaluation of actin organization and turnover. To investigate the dynamic nature of the actin cytoskeleton, we used a fusion protein between green fluorescent protein (GFP) and the second actin-binding domain (fABD2) of Arabidopsis (Arabidopsis thaliana) fimbrin, AtFIM1. The GFP-fABD2 fusion protein labeled highly dynamic and dense actin networks in diverse species and cell types, revealing structural detail not seen with alternative labeling methods, such as the commonly used mouse talin GFP fusion (GFP-mTalin). Further, we show that expression of the GFP-fABD2 fusion protein in Arabidopsis, unlike GFP-mTalin, has no detectable adverse effects on plant morphology or development. Time-lapse confocal microscopy and fluorescence recovery after photobleaching analyses of the actin cytoskeleton labeled with GFP-fABD2 revealed that lateral-filament migration and sliding of individual actin filaments or bundles are processes that contribute to the dynamic and continually reorganizing nature of the actin scaffold. These new observations of the dynamic actin cytoskeleton in plant cells using GFP-fABD2 reveal the value of this probe for future investigations of how actin filaments coordinate cellular processes required for plant development. 相似文献
3.
Characterization of a mutant Listeria monocytogenes strain expressing green fluorescent protein 总被引:1,自引:1,他引:1
Jiang LL Song HH Chen XY Ke CL Xu JJ Chen N Fang WH 《Acta biochimica et biophysica Sinica》2005,37(1):19-24
To construct a recombinant strain of Listeria monocytogenes for the expression of heterologous genes, homologous recombination was utilized for insertional mutation, targeting its listeriolysin O gene (hly). The gene encoding green fluorescent protein (GFP) was used as the indicator of heterologous gene expression. The gene gfp was inserted into hly downstream from its promoter and signal sequence by an overlapping extension polymerase chain reaction, and was then cloned into the shuttle plasmid pKSV7 for allelic exchange with the L. monocytogenes chromosome. Homologous recombination was achieved by growing the electro-transformed L. monocytogenes cells on chloramphenicol plates at a non-permissive temperature. Sequencing analysis indicated correct insertion of the target gene in-frame with the signal sequence. The recombinant strain expressed GFP constitutively as revealed by fluorescence microscopy. The mutant strain L. monocytogenes hly-gfp lost its hemolytic activity as visualized on the blood agar or when analyzed with the culture supernatant samples. Such insertional mutation resulted in a reduced virulence of about 2 logs less than its parent strain L. monocytogenes 10403s as shown by the 50%-lethal-dose assays in the mouse and embryonated chicken egg models. These results thus demonstrate that mutated L. monocytogeues could be a potential carrier for the expression of heterologous passenger genes or could act as an indicator organism in the food industry. 相似文献
4.
Modified forms of genes encoding green fluorescent protein (GFP) can be macroscopically detected when expressed in whole plants.
This technology has opened up new uses for GFP such as monitoring transgene presence and expression in the environment once
it is linked or fused to a gene of interest. When whole-plant or whole-organ GFP visualization is required, GFP should be
predictably expressed and reliably fluorescent. In this study the whole plant expression and fluorescence patterns of a mGFP5er
gene driven by the cauliflower mosaic virus 35S promoter was studied in intact GFP-expressing transgenic tobacco (Nicotiana tabacum cv. Xanthi). It was shown that GFP synthesis levels in single plant organs were similar to GUS activity levels from published
data when driven by the same promoter. Under the control of the 35S promoter, high expression of GFP can be used to visualize
stems, young leaves, flowers, and organs where the 35S promoter is most active. Modified forms of GFP could replace GUS as
the visual marker gene of choice. 相似文献
5.
Green fluorescent protein (GFP) is useful for studying protein trafficking in plant cells. This utility could potentially be extended to develop an efficient secretory reporter system or to enable on-line monitoring of secretory recombinant protein production in plant cell cultures. Toward this end, the aim of the present study was to: (1) demonstrate and characterize high levels of secretion of fluorescent GFP from transgenic plant cell culture; and (2) examine the utility of GFP fluorescence for monitoring secreted recombinant protein production. In this study we expressed in tobacco cell cultures a secretory GFP construct made by splicing an Arabidopsis basic chitinase signal sequence to GFP. Typical extracellular GFP accumulation was 12 mg/L after 10 to 12 days of culture. The secreted GFP is functional and it accounts for up to 55% of the total GFP expressed. Findings from culture treatments with brefeldin A suggest that GFP is secreted by the cultured tobacco cells via the classical endoplasmic reticulum-Golgi pathway. Over the course of flask cultures, medium fluorescence increased with the secreted GFP concentrations that were determined using either Western blot or enzyme-linked immunoassay. Real-time monitoring of secreted GFP in plant cell cultures by on-line fluorescence detection was verified in bioreactor cultures in which the on-line culture fluorescence signals showed a linear dependency on the secreted GFP concentrations. 相似文献
6.
Tamura K Shimada T Ono E Tanaka Y Nagatani A Higashi SI Watanabe M Nishimura M Hara-Nishimura I 《The Plant journal : for cell and molecular biology》2003,35(4):545-555
Green fluorescent protein (GFP) makes it possible for organelles and protein transport pathways to be visualized in living cells. However, GFP fluorescence has not yet been observed in the vacuoles of any organs of higher plants. We found that the fluorescence of a vacuole-targeted GFP was stably observed in the vacuoles of transgenic Arabidopsis plants under dark conditions, and that the fluorescence rapidly disappeared under light conditions. The vacuolar GFP was rapidly degraded within 1 h in the light, especially blue light. An inhibitor of vacuolar type H+-ATPase, concanamycin A, and an inhibitor of papain-type cysteine proteinase, E-64d, abolished both the light-dependent disappearance of GFP fluorescence and GFP degradation in the vacuoles. An in vitro assay showed that bacterially expressed GFP was degraded by extracts of Arabidopsis cultured-cell protoplasts at an acidic pH in the light. These results suggest that blue light induced a conformational change in GFP, and the resulting GFP in the vacuole was easily degraded by vacuolar papain-type cysteine proteinase(s) under the acidic pH. The light-dependent degradation accounts for the failure to observe GFP fluorescence in the vacuoles of plant organs. Our results show that stable GFP-fluoresced vacuoles are achieved by transferring the plants from the light into the dark before inspection with a fluorescent microscope. This might eliminate a large hurdle in studies of the vacuolar-targeting machinery and the organ- and stage-specific differentiation of endomembrane systems in plants. 相似文献
7.
Subcellular targeting of green fluorescent protein to plastids in transgenic rice plants provides a high-level expression system 总被引:11,自引:0,他引:11
Jang In-Cheol Nahm Baek Hie Kim Ju-Kon 《Molecular breeding : new strategies in plant improvement》1999,5(5):453-461
In order to develop a high-level expression system in transgenic rice, we inserted a synthetic gene (sgfp) encoding a modified form of the green fluorescent protein (GFP) into two expression vectors, Act1-sgfp for an untargeted and rbcS-Tp-sgfp for a chloroplast targeted expression. Several fertile transgenic rice plants were produced by the Agrobacterium-mediated method. Confocal microscopic analyses demonstrated that, in cells expressing the Act1-sgfp, GFP fluorescence was localized within the cytoplasm and nucleoplasm whereas, in cells expressing the rbcS-Tp-sgfp fusion gene, the fluorescence was specifically targeted to chloroplasts and non-green plastids. The levels of sgfp expression were about 0.5% of the total soluble protein in mature leaf tissues of the Act1-sgfp transformed lines. In contrast, expression levels were markedly increased in mature leaf tissues of the rbcS-Tp-sgfp transformed lines, yielding about 10% of the total soluble protein. N-terminal sequencing of the localized GFPs revealed that the Tp-GFP fusion protein was correctly processed during import to non-green plastids, as well as to chloroplasts. Thus, our results demonstrate that GFP can be produced at high levels and localized in specific subcellular spaces of transgenic plants, providing a high-level expression system for general use in rice, an agronomically important cereal. 相似文献
8.
Based on the complete genome sequence of Newcastle disease virus (NDV) ZJI strain, seven pairs of primers were designed to
amplify a cDNA fragment for constructing the plasmid pNDV/ZJI, which contained the full-length cDNA of the NDV ZJI strain.
The pNDV/ZJI, with three helper plasmids, pCIneoNP, pCIneoP and pCIneoL, were then cotransfected into BSR-T7/5 cells expressing
T7 RNA polymerase. After inoculation of the transfected cell culture supernatant into embryonated chicken eggs from specific-pathogen-free
(SPF) flock, an infectious NDV ZJI strain was successfully rescued. Green fluorescent protein (GFP) gene was amplified and
inserted into the NDV full-length cDNA to generate a GFP-tagged recombinant plasmid pNDV/ZJIGFP. After cotransfection of the
resultant plasmid and the three support plasmids into BSR-T7/5 cells, the recombinant NDV, NDV/ZJIGFP, was rescued. Specific
green fluorescence was observed in BSR-T7/5 and chicken embryo fibroblast (CEF) cells 48h post-infection, indicating that
the GFP gene was expressed at a relatively high level. NDV/ZJIGFP was inoculated into 10-day-old SPF chickens by oculonasal
route. Four days post-infection, strong green fluorescence could be detected in the kidneys and tracheae, indicating that
the recombinant GFP-tagged NDV could be a very useful tool for analysis of NDV dissemination and pathogenesis. 相似文献
9.
Ethyl 4-(4-hydroxyphenyl) methylidene- 2-methyl-5-oxoimidazolacetate (HBMIA) is a model chromophore of green fluorescent protein. The electronic structure of HBMIA in aqueous solution phase is studied using a hybrid method of quantum chemistry and statistical mechanics, RISM-SCF-SEDD. The solvatochromic shift is correctly reproduced by the present computations. 相似文献
10.
Animal imaging requires the use of reliable long-term fluorescence methods and technology. The application of confocal imaging to in vivo monitoring of transgene expression within internal organs and tissues has been limited by the accessibility to these sites. We aimed to test the feasibility of fibred confocal fluorescence microscopy (FCFM) to image in situ green fluorescent protein (GFP) in cells of living animals. We used transgenic rabbits expressing the enhanced GFP (eGFP) gene. Detailed tissue architecture and cell morphology were visualised and identified in situ by FCFM. Imaging of vasculature by using FCFM revealed a single blood vessel or vasculature network. We also used non-transgenic female rabbits mated with transgenic males to visualise eGFP expression in extra-foetal membranes and the placenta. Expression of the eGFP gene was confirmed by FCFM. This new imaging technology offers specific characteristics: a way to gain access to organs and tissues in vivo, sensitive detection of fluorescent signals, and cellular observations with rapid acquisition at near real time. It allows an accurate visualisation of tissue anatomical structure and cell morphology. FCFM is a promising technology to study biological processes in the natural physiological environment of living animals. 相似文献
11.
Wipa Chungjatupornchai Sirirat Fa-aroonsawat 《Journal of microbiology (Seoul, Korea)》2009,47(2):187-192
The translocation of proteins to cyanobacterial cell envelope is made complex by the presence of a highly differentiated membrane system. To investigate the protein translocation in cyanobacterium Synechococcus PCC 7942 using the truncated ice nucleation protein (InpNC) from Pseudomonas syringae KCTC 1832, the green fluorescent protein (GFP) was fused in frame to the carboxyl-terminus of InpNC. The fluorescence of GFP was found almost entirely as a halo in the outer regions of cells which appeared to correspond to the periplasm as demonstrated by confocal laser scanning microscopy, however, GFP was not displayed on the outermost cell surface. Western blotting analysis revealed that InpNC-GFP fusion protein was partially degraded. The N-terminal domain of InpNC may be susceptible to protease attack; the remaining C-terminal domain conjugated with GFP lost the ability to direct translocation across outer membrane and to act as a surface display motif. The fluorescence intensity of cells with periplasmic GFP was approximately 6-fold lower than that of cells with cytoplasmic GFP. The successful translocation of the active GFP to the periplasm may provide a potential means to study the property of cyanobacterial periplasmic substances in response to environmental changes in a non-invasive manner. 相似文献
12.
Amino terminal interaction in the prion protein identified using fusion to green fluorescent protein
In contrast to the well-characterized carboxyl domain, the amino terminal half of the mature cellular prion protein has no defined structure. Here, following fusion of mouse prion protein fragments to green fluorescence protein as a reporter of protein stability, we report extreme variability in fluorescence level that is dependent on the prion fragment expressed. In particular, exposure of the extreme amino terminus in the context of a truncated prion protein molecule led to rapid degradation, whereas the loss of only six amino terminal residues rescued high level fluorescence. Study of the precise endpoints and residue identity associated with high fluorescence suggested a domain within the amino terminal half of the molecule defined by a long-range intramolecular interaction between 23KKRPKP28 and 143DWED146 and dependent upon the anti-parallel beta-sheet ending at residue 169 and normally associated with the structurally defined carboxyl terminal domain. This previously unreported interaction may be significant for understanding prion bioactivity and for structural studies aimed at the complete prion structure. 相似文献
13.
The dark side of green fluorescent protein 总被引:1,自引:0,他引:1
Here, severe interference of chlorophyll with green fluorescent protein (GFP) fluorescence is described for medicago (Medicago truncatula), rice (Oryza sativa) and arabidopsis (Arabidopsis thaliana). This interference disrupts the proportional relationship between GFP content and fluorescence that is intrinsic to its use as a quantitative reporter. The involvement of chlorophyll in the loss of GFP fluorescence with leaf age was shown in vivo, by the removal of chlorophyll through etiolation or by ethanol extraction, and in vitro, by titration of a GFP solution with chlorophyll solutions of various concentrations. A substantial decrease in fluorescence in early development of medicago and rice leaves correlated with chlorophyll accumulation. In all three species tested, removal of chlorophyll yielded up to a 10-fold increase in fluorescence. Loss of GFP fluorescence in vitro was 4-fold greater for chlorophyll b than for chlorophyll a. Differences exist between plant species for the discrepancy between apparent GFP fluorescence and its actual level in green tissues. Substantial errors in estimating promoter activity from GFP fluorescence can occur if pigment interference is not considered. 相似文献
14.
Yi‐Ling Chiu Shinya Shikina Ching‐Fong Chang 《Molecular reproduction and development》2019,86(7):798-811
In a variety of organisms, adult gonads contain several specialized somatic cells that regulate and support the development of germline cells. In stony corals, the characteristics and functions of gonadal somatic cells remain largely unknown. No molecular markers are currently available that allow for the identification and enrichment of gonadal somatic cells in corals. Here, we showed that the testicular somatic cells of a stony coral, Euphyllia ancora, express an endogenous green fluorescent protein (GFP). Fluorescence microscopy showed that, in contrast to the endogenous expression of the red fluorescent protein of E. ancora ovaries that we have previously reported, the testes displayed a distinct green fluorescence. Molecular identification and spectrum characterization demonstrated that E. ancora testes expressed a GFP (named EaGFP) that is a homolog of the GFP from the jellyfish Aequorea victoria and that possesses an excitation maximum of 506 nm and an emission maximum of 514 nm. Immunohistochemical analyses revealed that the testicular somatic cells, but not the germ cells, expressed EaGFP. EaGFP was enclosed within one or a few granules in the cytoplasm of testicular somatic cells, and the granule number decreased as spermatogenesis proceeded. We also showed that testicular somatic cells could be enriched by using endogenous GFP as an indicator. The present study not only revealed one of the unique cellular characteristics of coral testicular cells but also established a technical basis for more in‐depth investigations of the function of testicular somatic cells in spermatogenesis in future studies. 相似文献
15.
So Jae-Seong Lim Hyoung Taek Oh Eun-Taex Heo Tae-Ryeon Koh Sung-Cheol Leung Kam Tin Lee Hung Trevors Jack T. 《World journal of microbiology & biotechnology》2002,18(1):17-21
The plant pathogen, Xanthomonas campestris NRRL B-1459 was chromosomally tagged with gfp, and the transformant, which was subjected to Southern hybridization showed the presence of gfp in the chromosome. The virulence-related gene of the transformant was not affected by the insertion of gfp. After inoculation into cabbage plants, the infection process was visually studied in planta. Using a fluorescence microscope, the migration and distribution of gfp-labelled bacteria was visualized in real time. As the gfp-labelled cells were easily visualized from the beginning of infection, we observed a time delay of 2 days between distribution of the Xanthomonas cells in cabbage plant and the appearance of visible necrosis. 相似文献
16.
目前主要使用激光共聚焦扫描显微镜观察绿色荧光蛋白的表达,但需要昂贵的仪器并耗费大量时间。本研究开发了一种新型激光诱导的微流芯片检测系统来监测绿色荧光蛋白在枯草芽孢杆菌中的表达。该系统主要由激光装置、光路系统、微流控芯片、光电倍增管和计算机处理系统等5部分组成。对该系统的测试结果显示,随着诱导强度的增强监测信号峰也随之增强,并且与激光共聚焦显微镜观察的结果一致。利用该芯片系统能够快速准确地筛选和鉴定用绿色荧光蛋白作为标记的细胞克隆,可以替代PCR鉴定方法。但该系统仅仅能够监测表达强度,不能够满足蛋白定位等高水平研究,因此,该系统适合应用于环境的微生物监测、药物筛选和其他无需观察蛋白定位等研究。 相似文献
17.
Expression of a modified green fluorescent protein gene in transgenic maize plants and progeny 总被引:6,自引:0,他引:6
Several modifications of a wild-type green fluorescent protein (GFP) gene were combined into a single construct, driven by
the ubi-1 promoter and intron region, and transformed into maize. Green fluorescence, indicative of GFP expression, was observed
in stably transformed callus as well as in leaves and roots of regenerated plants and their progeny. Cell wall autofluorescence
made GFP expression difficult to observe in sections of leaves and roots. However, staining sections with toluidine blue allowed
detection of GFP in transgenic tissue. Bright GFP fluorescence was observed in approximately 50% of the pollen of transgenic
plants. These results suggest that GFP can be used as a reporter gene in transgenic maize; however, further modification,
i.e., to alter the emission spectra, would increase its utility.
Received: 17 December 1997 / Revision received: 6 March 1998 / Accepted: 20 March 1998 相似文献
18.
Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis 下载免费PDF全文
Yamaguchi R Nakamura M Mochizuki N Kay SA Nagatani A 《The Journal of cell biology》1999,145(3):437-445
Phytochrome is a ubiquitous photoreceptor of plants and is encoded by a small multigene family. We have shown recently that a functional nuclear localization signal may reside within the COOH-terminal region of a major member of the family, phytochrome B (phyB) (Sakamoto, K., and A. Nagatani. 1996. Plant J. 10:859-868). In the present study, a fusion protein consisting of full-length phyB and the green fluorescent protein (GFP) was overexpressed in the phyB mutant of Arabidopsis to examine subcellular localization of phyB in intact tissues. The resulting transgenic lines exhibited pleiotropic phenotypes reported previously for phyB overexpressing plants, suggesting that the fusion protein is biologically active. Immunoblot analysis with anti-phyB and anti-GFP monoclonal antibodies confirmed that the fusion protein accumulated to high levels in these lines. Fluorescence microscopy of the seedlings revealed that the phyB-GFP fusion protein was localized to the nucleus in light grown tissues. Interestingly, the fusion protein formed speckles in the nucleus. Analysis of confocal optical sections confirmed that the speckles were distributed within the nucleus. In contrast, phyB-GFP fluorescence was observed throughout the cell in dark-grown seedlings. Therefore, phyB translocates to specific sites within the nucleus upon photoreceptor activation. 相似文献
19.
20.
Bao C Wang J Zhang R Zhang B Zhang H Zhou Y Huang S 《The Plant journal : for cell and molecular biology》2012,71(6):962-975
The organization of the actin cytoskeleton has been implicated in sclerenchyma development. However, the molecular mechanisms linking the actin cytoskeleton to this process remain poorly understood. In particular, there have been no studies showing that direct genetic manipulation of the actin cytoskeleton affects sclerenchyma development. Villins belong to the villin/gelsolin/fragmin superfamily and are versatile actin-modifying proteins. Several recent studies have implicated villins in tip growth of single cells, but how villins act in multicellular plant development remains largely unknown. Here, we found that two closely related villin isovariants from Arabidopsis, VLN2 and VLN3, act redundantly in sclerenchyma development. Detailed analysis of cross-sections from inflorescence stems of vln2 vln3 double mutant plants revealed a reduction in stem size and in the number of vascular bundles; however, no defects in synthesis of the secondary cell wall were detected. Surprisingly, the vln2 vln3 double mutation did not affect cell elongation of inter-fascicular fibers. Biochemical analyses showed that recombinant VLN2 was able to cap, sever and bundle actin filaments, similar to VLN3. Consistent with these biochemical activities, loss of function of VLN2 and VLN3 resulted in a decrease in the amount of F-actin and actin bundles in plant cells. Collectively, our findings demonstrate that VLN2 and VLN3 act redundantly in sclerenchyma development via bundling of actin filaments. 相似文献