首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
S Perri  D Ganem 《Journal of virology》1997,71(11):8448-8455
The viral polymerase and several cis-acting sequences are essential for hepadnaviral DNA replication, but additional host factors are likely to be involved in this process. We previously identified two sequences, UBS and DBS (upstream and downstream binding sites), present in multiple copies in and adjacent to the pregenomic RNA (pgRNA) terminal redundancy, that were specifically recognized by a 65-kDa host factor, p65. The possible roles of these two sequences in hepatitis B virus (HBV) replication were investigated in the context of the intact viral genome. UBS is contained within the terminal redundancy of pgRNA, and the 5' copy of this sequence is essential for viral replication. Mutations within the central core of UBS ablate p65 binding and selectively block synthesis of plus-strand DNA, without affecting RNA packaging or minus-strand synthesis. The DBS sequence, which is located downstream of the pgRNA polyadenylation site, overlaps the core (C) protein coding region. All mutations introduced into this site severely affected viral replication. However, these effects were shown to result from dominant negative effects of mutant core polypeptides rather than from cis-acting effects on RNA recognition. Thus, the 5' UBS but not DBS sites play important cis-acting roles in HBV DNA replication; however, the involvement of p65 in these roles remains a matter for investigation.  相似文献   

6.
7.
8.
Hepatitis B virus (HBV) is a contagious human pathogen causing liver diseases such as cirrhosis and hepatocellular carcinoma. An essential step during HBV replication is packaging of a pregenomic (pg) RNA within the capsid of core antigens (HBcAgs) that each contains a flexible C-terminal tail rich in arginine residues. Mutagenesis experiments suggest that pgRNA encapsidation hinges on its strong electrostatic interaction with oppositely charged C-terminal tails of the HBcAgs, and that the net charge of the capsid and C-terminal tails determines the genome size and nucleocapsid stability. Here, we elucidate the biophysical basis for electrostatic regulation of pgRNA packaging in HBV by using a coarse-grained molecular model that explicitly accounts for all nonspecific interactions among key components within the nucleocapsid. We find that for mutants with variant C-terminal length, an optimal genome size minimizes an appropriately defined thermodynamic free energy. The thermodynamic driving force of RNA packaging arises from a combination of electrostatic interactions and molecular excluded-volume effects. The theoretical predictions of the RNA length and nucleocapsid internal structure are in good agreement with available experiments for the wild-type HBV and mutants with truncated HBcAg C-termini.  相似文献   

9.
10.
J Jung  HY Kim  T Kim  BH Shin  GS Park  S Park  YJ Chwae  HJ Shin  K Kim 《PloS one》2012,7(7):e41087
To investigate the contributions of carboxyl-terminal nucleic acid binding domain of HBV core (C) protein for hepatitis B virus (HBV) replication, chimeric HBV C proteins were generated by substituting varying lengths of the carboxyl-terminus of duck hepatitis B virus (DHBV) C protein for the corresponding regions of HBV C protein. All chimeric C proteins formed core particles. A chimeric C protein with 221-262 amino acids of DHBV C protein, in place of 146-185 amino acids of the HBV C protein, supported HBV pregenomic RNA (pgRNA) encapsidation and DNA synthesis: 40% amino acid sequence identity or 45% homology in the nucleic-acid binding domain of HBV C protein was sufficient for pgRNA encapsidation and DNA synthesis, although we predominantly detected spliced DNA. A chimeric C protein with 221-241 and 251-262 amino acids of DHBV C, in place of HBV C 146-166 and 176-185 amino acids, respectively, could rescue full-length DNA synthesis. However, a reciprocal C chimera with 242-250 of DHBV C ((242)RAGSPLPRS(250)) introduced in place of 167-175 of HBV C ((167)RRRSQSPRR(175)) significantly decreased pgRNA encapsidation and DNA synthesis, and full-length DNA was not detected, demonstrating that the arginine-rich (167)RRRSQSPRR(175) domain may be critical for efficient viral replication. Five amino acids differing between viral species (underlined above) were tested for replication rescue; R169 and R175 were found to be important.  相似文献   

11.
12.
13.
14.
Previously, human hepatitis B virus (HBV) mutant 164, which has a truncation at the C terminus of the HBV core antigen (HBcAg), was speculated to secrete immature genomes. For this study, we further characterized mutant 164 by different approaches. In addition to the 3.5-kb pregenomic RNA (pgRNA), the mutant preferentially encapsidated the 2.2-kb or shorter species of spliced RNA, which can be reverse transcribed into double-stranded DNA before virion secretion. We observed that mutant 164 produced less 2.2-kb spliced RNA than the wild type. Furthermore, it appeared to produce at least two different populations of capsids: one encapsidated a nuclease-sensitive 3.5-kb pgRNA while the other encapsidated a nuclease-resistant 2.2-kb spliced RNA. In contrast, the wild-type core-associated RNA appeared to be resistant to nuclease. When arginines and serines were systematically restored at the truncated C terminus, the core-associated DNA and nuclease-resistant RNA gradually increased in both size and signal intensity. Full protection of encapsidated pgRNA from nuclease was observed for HBcAg 1-171. A full-length positive-strand DNA phenotype requires positive charges at amino acids 172 and 173. Phosphorylation at serine 170 is required for optimal RNA encapsidation and a full-length positive-strand DNA phenotype. RNAs encapsidated in Escherichia coli by capsids of HBcAg 154, 164, and 167, but not HBcAg 183, exhibited nuclease sensitivity; however, capsid instability after nuclease treatment was observed only for HBcAg 164 and 167. A new hypothesis is proposed here to highlight the importance of a balanced charge density for capsid stability and intracapsid anchoring of RNA templates.  相似文献   

15.
Lewellyn EB  Loeb DD 《PloS one》2011,6(2):e17202
The core protein of hepatitis B virus can be phosphorylated at serines 155, 162, and 170. The contribution of these serine residues to DNA synthesis was investigated. Core protein mutants were generated in which each serine was replaced with either alanine or aspartate. Aspartates can mimic constitutively phosphorylated serines while alanines can mimic constitutively dephosphorylated serines. The ability of these mutants to carry out each step of DNA synthesis was determined. Alanine substitutions decreased the efficiency of minus-strand DNA elongation, primer translocation, circularization, and plus-strand DNA elongation. Aspartate substitutions also reduced the efficiency of these steps, but the magnitude of the reduction was less. Our findings suggest that phosphorylated serines are required for multiple steps during DNA synthesis. It has been proposed that generation of mature DNA requires serine dephosphorylation. Our results suggest that completion of rcDNA synthesis requires phosphorylated serines.  相似文献   

16.
17.
18.
A. Yuryev  J. L. Corden 《Genetics》1996,143(2):661-671
The largest subunit of RNA polymerase II contains a repetitive C-terminal domain (CTD) consisting of tandem repeats of the consensus sequence Tyr(1)Ser(2)Pro(3)Thr(4) Ser(5)Pro(6) Ser(7). Substitution of nonphosphorylatable amino acids at positions two or five of the Saccharomyces cerevisiae CTD is lethal. We developed a selection ssytem for isolating suppressors of this lethal phenotype and cloned a gene, SCA1 (suppressor of CTD alanine), which complements recessive suppressors of lethal multiple-substitution mutations. A partial deletion of SCA1 (sca1Δ::hisG) suppresses alanine or glutamate substitutions at position two of the consensus CTD sequence, and a lethal CTD truncation mutation, but SCA1 deletion does not suppress alanine or glutamate substitutions at position five. SCA1 is identical to SRB9, a suppressor of a cold-sensitive CTD truncation mutation. Strains carrying dominant SRB mutations have the same suppression properties as a sca1Δ::hisG strain. These results reveal a functional difference between positions two and five of the consensus CTD heptapeptide repeat. The ability of SCA1 and SRB mutant alleles to suppress CTD truncation mutations suggest that substitutions at position two, but not at position five, cause a defect in RNA polymerase II function similar to that introduced by CTD truncation.  相似文献   

19.
20.
M Yu  J Summers 《Journal of virology》1994,68(7):4341-4348
We have investigated the role of phosphorylation of the capsid protein of the avian hepadnavirus duck hepatitis B virus in viral replication. We found previously that three serines and one threonine in the C-terminal 24 amino acids of the capsid protein serve as phosphorylation sites and that the pattern of phosphorylation at these sites in intracellular viral capsids is complex. In this study, we present evidence that the phosphorylation state of three of these residues affects distinct steps in viral replication. By substituting these residues with alanine in order to mimic serine, or with aspartic acid in order to mimic phosphoserine, and assaying the effects of these substitutions on various steps in virus replication, we were able to make the following inferences. (i) The presence of phosphoserines at residues 245 and 259 stimulates DNA synthesis within viral nucleocapsids. (ii) The absence of phosphoserine at residue 257 and at residues 257 and 259 stimulates covalently closed circular DNA synthesis and virus production, respectively. (iii) The presence of phosphoserine at position 259 is required for initiation of infection. The results implied that both phosphorylated and nonphosphorylated capsid proteins were necessary for a nucleocapsid particle to carry out all its functions in virus replication, explaining why differential phosphorylation of the capsid protein occurs in hepadnaviruses. Whether these differentially phosphorylated proteins coexist on the same nucleocapsid, or whether the nucleocapsid acquires sequential functions through selective phosphorylation and dephosphorylation, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号