首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In freshly isolated rabbit pulmonary artery smooth muscle cells, endothelin (ET)-1 induced a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) followed by a return to the initial [Ca(2+)](i). This response was not abolished by the voltage-dependent Ca(2+) channel blocker nicardipine or removal of Ca(2+) from the bath solution but was inhibited by ryanodine and thapsigargin. This finding suggested that the increase in [Ca(2+)](i) induced by ET-1 was attributable to release of Ca(2+) from ryanodine- and inositol 1,4,5-trisphosphate-sensitive intracellular Ca(2+) stores. The transient increase in [Ca(2+)](i) induced by ET-1 was also inhibited by pretreatment with antagonists of ET type A and B (ET(A) and ET(B)) receptors (BQ-123 and BQ-788, respectively). Furthermore, the ET(B) receptor agonist IRL-1620 induced an increase in [Ca(2+)](i) that was followed by a sustained increase in [Ca(2+)](i); the sustained increase in [Ca(2+)](i) was blocked by nicardipine. Using the nystatin-perforated patch-clamp technique, we found that IRL-1620 caused an increase in Ca(2+) current that was inhibited by addition of ET-1. ET-1 did not inhibit Ca(2+) current when cells were pretreated with BQ-123. These results suggested that when both receptor types are activated, the opposing responses lead to abolition of the sustained [Ca(2+)](i) increases induced by ET(B) receptor activation. Western blot analysis confirmed expression of ET(A) and ET(B) receptors. Finally, U-73122 inhibited the ET-1-induced [Ca(2+)](i) increase, indicating that phospholipase C was involved in modulation of the ET-1-induced [Ca(2+)](i) increase in rabbit pulmonary artery smooth muscle cells.  相似文献   

2.
Our previous work showed that ET-1 induced a concentration-dependent increase of cytosolic Ca2+ ([Ca]c) and nuclear Ca2+ ([Ca]n) in human aortic vascular smooth muscle cells (hVSMCs). In the present study, using hVSMCs and 3-dimensional confocal microscopy coupled to the Ca2+ fluorescent probe Fluo-3, we showed that peptidic antagonists of ETA and ETB receptors (BQ-123 (10(-6) mol/L) and BQ-788 (10(-7) mol/L), respectively) prevented, but did not reverse, ET-1-induced sustained increase of [Ca]c and [Ca]n. In contrast, nonpeptidic antagonists of ETA and ETB (respectively, BMS-182874 (10(-8)-10(-6) mol/L) and A-192621 (10(-7) mol/L)) both prevented and reversed ET-1-induced sustained increase of [Ca]c and [Ca]n. Furthermore, activation of the ETB receptor alone using the specific agonist IRL-1620 (10(-9) mol/L) induced sustained increases of [Ca]c and [Ca]n, and subsequent administration of ET-1 (10(-7) mol/L) further increased nuclear Ca2+. ET-1-induced increase of [Ca]c and [Ca]n was completely blocked by extracellular application of the Ca2+ chelator EGTA. Pretreatment with the G protein inhibitors pertussis toxin (PTX) and cholera toxin (CTX) also prevented the ET-1 response; however, strong membrane depolarization with KCl (30 mmol/L) subsequently induced sustained increase of [Ca]c and [Ca]n. Pretreatment of hVSMCs with either the PKC activator phorbol-12,13-dibutyrate or the PKC inhibitor bisindolylmaleimide did not affect ET-1-induced sustained increase of intracellular Ca2+. These results suggest that both ETA- and ETB-receptor activation contribute to ET-1-induced sustained increase of [Ca]c and [Ca]n in hVSMCs. Moreover, in contrast to the peptidic antagonists of ET-1 receptors, the nonpeptidic ETA-receptor antagonist BMS-182874 and the nonpeptidic ETB-receptor antagonist A-192621 were able to reverse the effect of ET-1. Nonpeptidic ETA- and ETB-receptor antagonists may therefore be better pharmacological tools for blocking ET-1-induced sustained increase of intracellular Ca2+ in hVSMCs. Our results also suggest that the ET-1-induced sustained increase of [Ca]c and [Ca]n is not mediated via activation of PKC, but via a PTX- and CTX-sensitive G protein calcium influx through the R-type Ca2+ channel.  相似文献   

3.
We previously showed that ablation of caveolin-1 (Cav-1) gene expression in mice promotes neointimal hyperplasia in vivo, a phenomenon normally characterized by smooth muscle cell (SMC) migration and proliferation. Whether these defects are cell autonomous, i.e., due to loss of Cav-1 within SMCs or loss of Cav-1 expression in other adjacent cell types in vivo, remains unknown. Cav-1 has been shown to associate with receptors for many vasoactive factors on the SMC surface. Therefore, Cav-1 might be an important regulator of SMC proliferation, migration, and signal transduction. To mechanistically dissect the role of Cav-1 in SMC signaling, we isolated SMCs from the aortas (AoSMCs) of Cav-1-deficient (Cav-1(-/-)) mice and characterized these cells with respect to their proliferation, migration, and Ca(2+) response to an important vasoactive factor, endothelin-1 (ET-1). 5-Bromo-2'-deoxyuridine incorporation and a wound-healing assay showed an increase in proliferation and migration rates in Cav-1(-/-) compared with wild-type (Cav-1(+/+)) AoSMCs. Cav-1(-/-) AoSMCs demonstrated upregulation of phosphorylated ERK1/2, cyclin D1, and proliferating cell nuclear antigen and reduced expression of the cyclin-dependent kinase inhibitor p27(Kip1). The Ca(2+) response was examined in the presence of ET-1 and assessed by confocal microscopy with the Ca(2+)-sensitive fluorescent probe fluo 3. When treated with ET-1, Cav-1(-/-) AoSMCs exhibited a faster and larger increase in free intracellular Ca(2+) than Cav-1(+/+) cells. The ET-1-induced response in Cav-1(-/-) cells was mediated by the ET(B) receptor, as shown using the ET(B) receptor antagonist BQ-788 and the ET(A) receptor antagonist BQ-123. In Cav-1(-/-) cells, ET(A) receptor expression was reduced and ET(B) receptor expression was upregulated. Therefore, Cav-1 ablation increased the ET-1-induced Ca(2+) response in SMCs by altering the type and expression level of the ET receptor (i.e., receptor isoform switching). These data suggest a novel regulatory role for Cav-1 in SMCs with respect to their proliferation, migration, and Ca(2+)-mediated signaling.  相似文献   

4.
Modulation of endothelin (ET-1)-induced [Ca(2+)](i)transients and receptor expression by parathyroid hormone (PTH) was studied in UMR-106 osteoblastic osteosarcoma cells. Ca(2+)signaling was assessed with Fura-2, and ET receptor mRNA expression was determined using ET(A)- and ET(B)-specific primers and RT-PCR amplification. ET-1 binding in UMR-106 cell membranes was also measured. PTH pretreatment for 8 h decreased the [Ca(2+)](i)transients elicited by ET-1 and by the ET(B)-selective agonist sarafotoxin 6c (S6c). When ET(B)receptors were desensitized by pretreatment with S6c or blocked with the ET(B)-selective antagonist BQ-788, the remaining ET(A)component of the signal was also decreased by PTH pretreatment. In contrast, [Ca(2+)](i)transients elicited by PGF(2alpha)and ionomycin were increased following PTH pretreatment, indicating that the effect of PTH to decrease ET-1-stimulated transients was selective. PTH pretreatment also decreased [(125)I]ET-1 binding and ET(A)and ET(B)mRNA, with maximal effects at approximately 8 h. ET-1 was not detectable in medium from either control or PTH treated UMR-106 cultures, suggesting that the decreased expression of ET receptors was not due to enhanced ET production and subsequent homologous desensitization. The downregulation of ET receptors in osteoblasts by PTH pretreatment may serve as a homeostatic mechanism in bone.  相似文献   

5.
6.
Although insulin resistance (IR) is a major risk factor for coronary artery disease, little is known about the regulation of coronary vascular tone in IR by endothelin-1 (ET-1). We examined ET-1 and PGF(2alpha)-induced vasoconstriction in isolated small coronary arteries (SCAs; approximately 250 microM) of Zucker obese (ZO) rats and control Zucker lean (ZL) rats. ET-1 response was assessed in the absence and presence of endothelin type A (ET(A); BQ-123), type B (ET(B); BQ-788), or both receptor inhibitors. ZO arteries displayed reduced contraction to ET-1 compared with ZL arteries. In contrast, PGF(2alpha) elicited similar vasoconstriction in both groups. ET(A) inhibition diminished the ET-1 response in both groups. ET(B) inhibition alone or in combination with ET(A) blockade, however, restored the ET-1 response in ZO arteries to the level of ZL arteries. Similarly, inhibition of endothelial nitric oxide (NO) synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME) enhanced the contraction to ET-1 and abolished the difference between ZO and ZL arteries. In vascular smooth muscle cells from ZO, ET-1-induced elevation of myoplasmic intracellular free calcium concentration ([Ca2+]i) (measured by fluo-4 AM fluorescence), and maximal contractions were diminished compared with ZL, both in the presence and absence of l-NAME. However, increases in [Ca2+]i elicited similar contractions of the vascular smooth muscle cells in both groups. Analysis of protein and total RNA from SCA of ZO and ZL revealed equal expression of ET-1 and the ET(A) and ET(B) receptors. Thus coronary arteries from ZO rats exhibit reduced ET-1-induced vasoconstriction resulting from increased ET(B)-mediated generation of NO and diminished elevation of myoplasmic [Ca2+]i.  相似文献   

7.
Endothelin-A (ET(A)) and endothelin-B (ET(B)) receptors have been demonstrated in intact heart and cardiac membranes. ET(A) receptors have been demonstrated on adult ventricular myocytes. The aim of the present study was to determine the presence of ET(B) and the relative contribution of this receptor subtype to total endothelin-1 (ET-1) binding on adult ventricular myocytes. Saturation binding experiments indicated that ET-1 bound to a single population of receptors (Kd = 0.52 +/- 0.13 nM, n = 4) with an apparent maximum binding (Bmax) of 2.10 +/- 0.25 sites (x 10(5))/cell (n = 4). Competition experiments using 40 pM [125I]ET-1 and nonradioactive ET-1 revealed a Ki of 660 +/- 71 pM (n = 10) and a Hill coefficient (nH) of 0.99 +/- 0.10 (n = 10). A selective ET(A) antagonist, BQ610, displaced 80% of the bound [125I]ET-1. No displacement was observed by concentrations of an ET(B)-selective antagonist, BQ788, up to 1.0 microM. However, in the presence of 1.0 microM BQ610, BQ788 inhibited the remaining [125I]ET-1 binding. Similarly, in the presence of 1.0 microM BQ788, BQ610 inhibited the remaining specific [125I]ET-1 binding. Binding of an ET(B1)-selective agonist, [125I]IRL-1620, confirmed the presence of ET(B). ET(B) bound to ET-1 irreversibly, whereas binding to ET(A) demonstrated both reversible and irreversible components, and BQ610 and BQ788 bound reversibly. Reducing the incubation temperature to 0 degrees C did not alter the irreversible component of ET-1 binding. Hence, both ET(A) and ET(B) receptors are present on intact adult rat ventricular myocytes, and the ratio of ET(A):ET(B) binding sites is 4:1. Both receptor subtypes bind to ET-1 by a two-step association involving the formation of a tight receptor-ligand complex; however, the kinetics of ET-1 binding to ET(A) versus ET(B) differ.  相似文献   

8.
Endothelin-1 (ET-1) is a vasoconstrictor peptide that acts on ET(A) and ET(B) receptors on smooth muscle cells (SMCs). Because vascular SMCs can express both receptors, it is difficult to study the localization and properties of each subtype. Therefore, we investigated the localization and function of ET(A) and ET(B) receptors transfected into HEK 293 cells. Immunocytochemistry was used to examine colocalization of ET receptors with the plasma membrane marker, pan cadherin. In cells transfected with ET(A) receptors, 83 +/- 2% of these receptors colocalized with pan cadherin. In ET(B) receptor-transfected cells, 54 +/- 2% of the receptor colocalized with pan cadherin. When ET(A) and ET(B) receptors were cotransfected, 97 +/- 1% of ET(B) receptors colocalized with ET(A) receptors and 84 +/- 2% of ET(B) receptors colocalized with pan cadherin. ET-1 and sarafotoxin 6c (S6c, ET(B) receptor agonist) increased [Ca2+]i in cells transfected with ET(A) or ET(B) receptors; 100 nM of ET-1 and S6c caused maximal responses. When stimulated with ET-1, ET(B) receptors desensitized faster (t(1/2) = 21 +/- 1 sec) than ET(A) receptors (t(1/2) = 48 +/- 1 sec). S6c-induced increases in [Ca2+]i desensitized in cells expressing ET(B) receptors only (t(1/2) = 17 +/- 1 s). Desensitization was eliminated in cells cotransfected with ET receptors. We conclude that ET(A) receptors localize to the cell membrane, whereas ET(B) receptors are in the membrane and intracellular compartments. Coexpressed ET receptors are in the membrane. ET(B) receptors desensitize faster than ET(A) receptors, but receptor coexpression eliminates desensitization. Finally, ET(A) and ET(B) receptors interact to change receptor trafficking which may modify ET receptor function in vascular SMCs coexpressing these receptors.  相似文献   

9.
Hong SJ 《Cellular signalling》2002,14(10):811-817
The effect of endothelin-1 (ET-1) on the intracellular free Ca(2+) ([Ca(2+)](i)) mobility in cultured H9c2 myocardiac ventricular cells was studied after loading with fura-2-AM. In Ca(2+)-containing buffer, ET-1 induced [Ca(2+)](i) rise from 10(-7) to 10(-9) M. ET-1 induced [Ca(2+)](i), which was composed of a first small peak and a secondary persistent plateau. In Ca(2+)-free buffer, pretreatment with 10(-7) M ET-1 inhibited the thapsigargin and carbonylcyanide m-chlorophenylhydrazone (CCCP)-induced [Ca(2+)](i) increase. Meanwhile, pretreatment with thapsigargin and CCCP also inhibited ET-1-induced [Ca(2+)](i) rise. In Ca(2+)-containing buffer, the ET(A) receptor antagonist (BQ123) completely abolished the secondary rising peak and plateau. Conversely, the ET(B) receptor antagonist (BQ788) completely inhibited the first small peak and secondary peak plateau. Nifedipine and La(3+) also abolished the 10(-7) M ET-1-induced [Ca(2+)](i) in the first rising peak. The internal Ca(2+) release induced by ET-1 was inhibited by U73122 (phospholipase C inhibitor), propranolol (phospholipase D inhibitor) and aristolochic acid (phospholipase A2 inhibitor). After incubation of 10(-7) M ET-1 in Ca(2+)-free buffer, the addition of 5 mM CaCl(2) increased Ca(2+) influx, implying that release of Ca(2+) from internal stores further induces capacitative Ca(2+) entry. Taken together, these results suggest that both ET(A) and ET(B) receptors are involved in ET-1-induced [Ca(2+)](i) rise in H9c2 myocardiac ventricular cells. Whereas ET(B) receptor seems to mediate the initial Ca(2+) influx via L-type Ca(2+) channel, ET(A) receptor appears to be involved in the subsequent Ca(2+) release from endoplasmic reticulum and mitochondria Ca(2+) stores.  相似文献   

10.
11.
S Mihara  M Fujimoto 《Life sciences》1992,50(3):219-226
We characterized the endothelin (ET) receptor in Girardi heart (GH) cells derived from human atrium. The ET isopeptides ET-1, ET-2 and ET-3 induced the monotonous and long-lasting rise in cytosolic free Ca2+ concentration [( Ca2+]i) with almost the same potency in GH cells. Scatchard analysis of [125I]ET-1 and [125I]ET-3 binding revealed that GH cells have almost the same number of binding sites for either labeled ligand. All ET isopeptides displaced either [125I]ET-1 or [125I]ET-3 binding in GH cells almost equipotently. These results reveal that the functional ET receptors in GH cells are of the ETB-type. GH cells are the first cell line to be found to express the functional ETB-receptor.  相似文献   

12.
We found that human chymase selectively produces 31-amino-acid length endothelins (1-31) (ETs(1-31)). We investigated the effect of synthetic ET-1(1-31) on intracellular free Ca2+ concentration ([Ca2+]i) in cultured human mesangial cells. ET-1(1-31) increased [Ca2+]i in a concentration-dependent manner to a similar extent as ET-1. The ET-1 (1-31)-induced [Ca2+]i increase was not influenced by removal of extracellular Ca2+ but was inhibited by thapsigargin. ET-1(1-31)-induced [Ca2+]i increase was not affected by phosphoramidon. It was inhibited by BQ123, but not by BQ788. These results suggest that ET-1(1-31) by itself exhibits bioactive properties probably through endothelin ET(A) or ET(A)-like receptors. Since human chymase has been reported to exist in the kidney, ET-1(1-31) may be a candidate substance for mesangium-relevant diseases.  相似文献   

13.
The use of an ET-1 fluorescent probe in human heart and vascular smooth muscle cells showed that ET-1 receptors are present at both the sarcolemma and nuclear envelope membranes. The use of immunofluorescence studies showed that the ETA receptor was mainly present at the sarcolemma and cytosolic levels. However, the ETB receptor was present at the sarcolemma and the cytosol, as well as the nuclear envelope membranes and the nucleoplasm. In addition, ET-1 immunoreactivity was seen in the cytosol and the nucleus. Using Ca2+ fluorescent probes such as Fluo-3, Indo 1, and yellow cameleon, as well as confocal microscopy three-dimensional image measurement technique, stimulation of ET-1 receptors at the sarcolemma membranes induced an increase of cytosolic and nuclear free Ca2+ levels. This effect of extracellular ET-1 was blocked by removal of extracellular calcium. Direct stimulation of ET-1 receptors at the nuclear envelope membranes also induced an increase of intranuclear free Ca2+ level. Our results suggest that the stimulation of sarcolemmal Ca2+ influx by ET-1 seems to be due to the activation of ETA and ETB receptors. However, the increase of nucleoplasmic Ca2+ levels by cytosolic ET-1 seems to be mediated via the activation of ETB receptors. Activation of nuclear membranes ETB receptors seems to prevent nuclear Ca2+ overload and may protect the cell from apoptosis.  相似文献   

14.
J Kishino  K Hanasaki  T Kato  H Arita 《FEBS letters》1991,280(1):103-106
We studied the presence of specific binding sites for endothelin (ET) and the effect of ET on cytosolic free Ca2+ concentration ([Ca2+]i) in murine thioglycolate-activated peritoneal macrophages. Scatchard analysis for binding experiments using [125I]ET-1 or [125I]ET-3 revealed the existence of a single class of binding sites. The binding parameters (Kd and Bmax) for [125I]ET-1 were almost identical to those for [125I]ET-3. In addition, unlabeled 3 ET isopeptides (ET-1, ET-2 and ET-3) inhibited the specific binding of both ET-1 and ET-3 with similar inhibitory potencies. All 3 ET isopeptides caused an increase in [Ca2+]i in the same dose-dependent manner (0.01-100 nM). These results demonstrate the existence of an ET receptor with the same affinity for all isoforms that mediates the ET-induced intracellular Ca2+ mobilization in murine peritoneal macrophages.  相似文献   

15.
We have reported that eucapnic intermittent hypoxia (E-IH) causes systemic hypertension, elevates plasma endothelin 1 (ET-1) levels, and augments vascular reactivity to ET-1 and that a nonspecific ET-1 receptor antagonist acutely lowers blood pressure in E-IH-exposed rats. However, the effect of chronic ET-1 receptor inhibition has not been evaluated, and the ET receptor subtype mediating the vascular effects has not been established. We hypothesized that E-IH causes systemic hypertension through the increased ET-1 activation of vascular ET type A (ET(A)) receptors. We found that mean arterial pressure (MAP) increased after 14 days of 7 h/day E-IH exposure (109 +/- 2 to 137 +/- 4 mmHg; P < 0.005) but did not change in sham-exposed rats. The ET(A) receptor antagonist BQ-123 (10 to 1,000 nmol/kg iv) acutely decreased MAP dose dependently in conscious E-IH but not sham rats, and continuous infusion of BQ-123 (100 nmol.kg(-1).day(-1) sc for 14 days) prevented E-IH-induced increases in MAP. ET-1-induced constriction was augmented in small mesenteric arteries from rats exposed 14 days to E-IH compared with those from sham rats. Constriction was blocked by the ET(A) receptor antagonist BQ-123 (10 microM) but not by the ET type B (ET(B)) receptor antagonist BQ-788 (100 microM). ET(A) receptor mRNA content was greater in renal medulla and coronary arteries from E-IH rats. ET(B) receptor mRNA was not different in any tissues examined, whereas ET-1 mRNA was increased in the heart and in the renal medulla. Thus augmented ET-1-dependent vasoconstriction via vascular ET(A) receptors appears to elevate blood pressure in E-IH-exposed rats.  相似文献   

16.
Evidence suggests that endocardial endothelial cells (EECs) may play a role in the regulation of cardiac function by releasing ET-1. Furthermore, reports in the literature suggested that differences may exist in peptide receptor distribution between the left and right EECs. In this study, we verified if the distribution and density of ET-1 and its receptors could be different in right as compared to left ventricular EECs, and whether this difference may affect ET-1-induced increase of intracellular calcium. Using immunofluorescence and 3D confocal microscopy, our results showed that in both cell types, the ET(A) receptor is present and is homogeneously distributed throughout the two cell types. The relative density of the ET(A) receptor is similar in both right and left ventricular EECs. The ET(B) receptor is also present in right and left ventricular EECs, however, the relative density of the ET(B) receptor is higher in the nucleus as compared to the cytosol. In addition, the ET(B) receptor density was found to be higher in left EECs as compared to right EECs. In addition, our results showed that ET-1 is present in the cytosol and the nucleus of both types of cells and that the relative density of ET-1 is higher in right as compared to left ventricular EECs. Moreover, using the Fura-2 calcium measurement technique, our results showed that in left ventricular EECs, both ET(A) and ET(B) receptor activation mediated the effect of ET-1 on intracellular calcium, whereas in right ventricular EECs, this effect was solely mediated by the ET(A) receptor. In conclusion, our results showed that ET-1 and its receptors are present in both right and left ventricular EECs. However, the distribution and relative density of ET-1 and its receptors seem to be different in right EECs as compared to left EECs.  相似文献   

17.
Challenge of protease-activated receptors induces cytosolic Ca(2+) concentration ([Ca(2+) ](c)) increase, mitogen-activated protein kinase activation and reactive oxygen species (ROS) formation with a bandwidth of responses in individual cells. We detected in this study in situ the thrombin-induced [Ca(2+) ](c) rise and ROS formation in dissociated hippocampal astrocytes and neurons in a mixed culture. In identified cells, single cell responses were correlated with extracellular-regulated kinase (ERK)1/2 phosphorylation level. On average, in astrocytes, thrombin induced a transient [Ca(2+) ](c) rise with concentration-dependent increase in amplitude and extrusion rate and high ERK1/2 phosphorylation level. Correlation analysis of [Ca(2+) ](c) response characteristics of single astrocytes reveals that astrocytes with nuclear phosphoERK1/2 localization have a smaller Ca(2+) amplitude and extrusion rate compared with cells with a cytosolic phosphoERK1/2 localization. In naive neurons, without thrombin challenge, variable ERK1/2 phosphorylation patterns are observed. ROS were detected by hydroethidine. Only in neurons with increased ERK1/2 phosphorylation level, we see sustained intracellular rise in fluorescence of the dye lasting over several minutes. ROS formation was abolished by pre-incubation with the NADPH oxidase inhibitor apocynin. Additionally, thrombin induced an immediate, transient hydroethidine fluorescence increase. This was interpreted as NADPH oxidase-mediated O(2) (?-) -release into the extracellular milieu, because it was decreased by pre-incubation with apocynin, and could be eluted by superfusion. In conclusion, the phosphorylation status of ERK1/2 determines the thrombin-dependent [Ca(2+) ](c) increase and ROS formation and, thus, influences the capacity of thrombin to regulate neuroprotection or neurodegeneration.  相似文献   

18.
In the vascular system, endothelin (ET) type B (ET(B)) receptors for ET-1 are located on endothelial and on venous and arterial smooth muscle cells. In the present study, we investigated the hemodynamic effects of chronic ET(B) receptor blockade at low and high doses in the Syrian Golden hamster. After 16 days of gavage with A-192621 (0.5 or 30 mg.kg(-1).day(-1)), a selective ET(B) receptor antagonist, hamsters were anesthetized with a mixture of ketamine and xylazine (87 and 13 mg/kg im, respectively), and basal mean arterial blood pressure (MAP) and pressor responses to exogenous ET-1 were evaluated. The lower dose of A-192621 (0.5 mg.kg(-1).day(-1)) did not modify basal MAP, whereas the higher dose (30 mg.kg(-1).day(-1)) increased MAP and plasma ET levels. Radio-telemetry recordings confirmed the increase in MAP induced by the higher dose of A-192621 in conscious hamsters. On the other hand, although the lower dose of A-192621 was devoid of intrinsic pressor effects, it markedly reduced the transient hypotensive phase induced by intravenously injected IRL-1620, a selective ET(B) receptor agonist. Finally, A-192621 (0.5 mg.kg(-1).day(-1)) alone or A-192621 (30 mg.kg(-1).day(-1)) + atrasentan (6 mg.kg(-1).day(-1)), a selective ET(A) receptor antagonist, potentiated the pressor response to exogenous ET-1. Our results suggest that, in the hamster, ET(B) receptors on vascular smooth muscle cells are importantly involved in the clearance of endogenous ET-1, whereas the same receptor type on the endothelium is solely involved in the vasodilatory responses to the pressor peptide. Blockade of endothelial and vascular smooth muscle cell ET(B) receptors triggers a marked potentiation of ET(A)-dependent increases in systemic resistance.  相似文献   

19.
There has been considerable debate as to whether adenosine triphosphate (ATP) is compartmentalized within cells and, in particular, whether the ATP concentration directly beneath the plasma membrane, experienced by membrane proteins, is the same as that of the bulk cytoplasm. This issue has been difficult to address because there is no indicator of cytosolic ATP, such as those available for Ca(2+), capable of resolving the submembrane ATP concentration ([ATP](sm)) in real time within a single cell. We show here that mutant ATP-sensitive K(+) channels can be used to measure [ATP](sm) by comparing the increase in current amplitude on patch excision with the ATP dose-response curve. In Xenopus oocytes, [ATP](sm) was 4.6 +/- 0.3 mm (n = 29) under resting conditions, slightly higher than that measured for the bulk cytoplasm (2.3 mm). In mammalian (COSm6) cells, [ATP](sm) was slightly lower and averaged 1.4 +/- 0.1 mm (n = 66). Metabolic poisoning (10 min of 3 mm azide) produced a significant fall in [ATP](sm) in both types of cells: to 1.2 +/- 0.1 mm (n = 24) in oocytes and 0.8 +/- 0.11 mm for COSm6 cells. We conclude that [ATP](sm) lies in the low millimolar range and that there is no gradient between bulk cytosolic and submembrane [ATP].  相似文献   

20.
This study investigated, in rabbit papillary muscles (n = 61) and human auricular strips (n = 7), effects of endothelin-1 (ET-1; 0.1-10 nM) on diastolic myocardial properties. ET-1 (1 nM) was also given in the presence of selective ET(A) or ET(B) antagonism, nonselective ET(A)/ET(B) antagonism, and Na(+)/H(+) exchanger inhibition. Effects of 6.3 mM Ca(2+) were also studied. ET-1 dose dependently increased inotropism. In contrast to baseline, in the presence of ET-1, resting tension (RT) decreased, after an isometric twitch, 3.4 +/- 1.4, 6.9 +/- 1.5, and 12.5 +/- 3.1% with 0.1, 1, and 10 nM, respectively, reflecting an increase in myocardial distensibility. ET-1 effects were abolished with selective ET(A) as well as with nonselective ET(A)/ET(B) antagonism, whereas they were still present with ET(B) antagonism. Na(+)/H(+) exchanger inhibition abolished ET-1 effects on distensibility, whereas it only partially inhibited positive inotropic effect. Ca(2+) increased inotropism to a similar extent to ET-1 (1 nM) but did not affect distensibility. ET-1 therefore increased diastolic distensibility of acutely loaded human and nonhuman myocardium. This effect is mediated by ET(A) receptors, requires Na(+)/H(+) exchanger activation, and cannot be elicited by Ca(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号