首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alloantibodies can play a key role in acute and chronic allograft rejection. However, relatively little is known of factors that control B cell responses following allograft tolerance induction. Using 3-83 Igi mice expressing an alloreactive BCR, we recently reported that allograft tolerance was associated with the sustained deletion of the alloreactive B cells at the mature, but not the immature, stage. We have now investigated the basis for the long-term control of alloreactive B cell responses in a non-BCR-transgenic model of C57BL/6 cardiac transplantation into BALB/c recipients treated with anti-CD154 and transfusion of donor-specific spleen cells. We demonstrate that the long-term production of alloreactive Abs by alloreactive B cells is actively regulated in tolerant BALB/c mice through the dominant suppression of T cell help. Deletion of CD25(+) cells resulted in a loss of tolerance and an acquisition of the ability to acutely reject allografts. In contrast, the restoration of alloantibody responses required both the deletion of CD25(+) cells and the reconstitution of alloreactive B cells. Collectively, these data suggest that alloreactive B cell responses in this model of tolerance are controlled by dominant suppression of T cell help as well as the deletion of alloreactive B cells in the periphery.  相似文献   

2.
Memory T cells specific for donor Ags present a unique challenge in transplantation. In addition to expressing robust immune responses to a transplanted organ, memory T cells may be resistant to the effects of immunosuppressive therapies used to prolong graft survival. In this study, we explore the possibility of controlling deleterious donor-reactive memory CD4 T cells through lymphoid sequestration. We showed that sphingosine 1-phosphate receptor-1 agonist FTY720 induces relocation of circulating memory CD4 T cells into secondary lymphoid organs. Lymphoid sequestration of these donor-reactive memory CD4 T cells prolonged survival of murine heterotopic cardiac allografts and synergizes with conventional costimulatory blockade to further increase graft survival. Despite limited trafficking, memory CD4 T cells remain capable of providing help for the induction of anti-donor CD8 T cell and alloantibody responses. Elimination of antidonor humoral immunity resulted in indefinite allograft survival proving the pathogenicity of alloantibody under these conditions. Overall, this is the first demonstration that FTY720 influences memory CD4 T cell trafficking and attenuates their contribution to allograft rejection. The data have important implications for guiding FTY720 therapy and for designing combinatorial strategies aimed at prolonging allograft survival in sensitized transplant patients with donor-specific memory T cells.  相似文献   

3.
Both humoral and cellular immune responses are involved in renal allograft rejection. Interleukin (IL)-6 is a regulatory cytokine for both B and Foxp3 (forkhead box P3)-expressing regulatory T (Treg) cells. This study was designed to investigate the impact of donor IL-6 production on renal allograft survival. Donor kidneys from IL-6 knockout (KO) vs. wild-type (WT) C57BL/6 mice (H-2(b)) were orthotopically transplanted to nephrotomized BALB/c mice (H-2(d)). Alloantibodies and Treg cells were examined by fluorescence-activated cell sorting analysis. Graft survival was determined by the time to graft failure. Here, we showed that a deficiency in IL-6 expression in donor kidneys significantly prolonged renal allograft survival compared with WT controls. IL-6 protein was upregulated in renal tubules and endothelium of renal allografts following rejection, which correlated with an increase in serum IL-6 compared with that in those receiving KO grafts or naive controls. The absence of graft-producing IL-6 or lower levels of serum IL-6 in the recipients receiving IL-6 KO allografts was associated with decreased circulating anti-graft alloantibodies and increased the percentage of intragraft CD4(+)CD25(+)Foxp3(+) Treg cells compared with those with WT allografts. In conclusion, the lack of graft-producing IL-6 significantly prolongs renal allograft survival, which is associated with reduced alloantibody production and/or increased intragraft Treg cell population, implying that targeting donor IL-6 may effectively prevent both humoral and cellular rejection of kidney transplants.  相似文献   

4.
The cellular basis of the transplantation tolerance in a model system of BALB/c (Mls-1b) mice rendered cyclophosphamide (CP)-induced tolerant to DBA/2 (Mls-1a) skin allograft was investigated by assessing V beta 6+ T cells. From our results, three major mechanisms that are essential to the CP-induced skin allograft tolerance were sequentially elucidated. The first mechanism was destruction of donor-Ag-stimulated T cells in the periphery by CP treatment. The second mechanism was intrathymic clonal deletion of donor-reactive T cells, such as V beta 6+ T cells, correlating strongly with intrathymic mixed chimerism. The clonal deletion, however, was not always essential for the maintenance of the skin allografts, because DBA/2 skin survived even after the clonal deletion terminated and V beta 6+ T cells reappeared in the periphery of the recipient BALB/c mice. The third mechanism was generation of tolerogen-specific suppressor T cells, especially in the late stage of the tolerance. In contrast, the clonal anergy that is evidenced by the specific suppression of mixed lymphocyte reaction in the recipient BALB/c mice after injecting with DBA/2 spleen cells alone was not considered as a significant mechanism in prolonging skin allograft survival because such anergic mice showed accelerated rejection of the skin allografts. These results may suggest practical hierarchy of the mechanisms of CP-induced allograft tolerance.  相似文献   

5.
Induction of allograft tolerance in the absence of Fas-mediated apoptosis.   总被引:5,自引:0,他引:5  
Using certain immunosuppressive regimens, IL-2 knockout (KO) mice, in contrast to wild-type (wt) controls, are resistant to the induction of allograft tolerance. The mechanism by which IL-2 regulates allograft tolerance is uncertain. As IL-2 KO mice have a profound defect in Fas-mediated apoptosis, we hypothesized that Fas-mediated apoptosis of alloreactive T cells may be critical in the acquisition of allograft tolerance. To definitively study the role of Fas in the induction of transplantation tolerance, we used Fas mutant B6.MRL-lpr mice as allograft recipients of islet and vascularized cardiac transplants. Alloantigen-stimulated proliferation and apoptosis of Fas-deficient cells were also studied in vivo. Fas mutant B6.MRL-lpr (H-2b) mice rapidly rejected fully MHC-mismatched DBA/2 (H-2d) islet allografts and vascularized cardiac allografts with a tempo that is comparable to wt control mice. Both wt and B6.MRL-lpr mice transplanted with fully MHC-mismatched islet allografts or cardiac allografts can be readily tolerized by either rapamycin or combined costimulation blockade (CTLA-4Ig plus anti-CD40L mAb). Despite the profound defect of Fas-mediated apoptosis, Fas-deficient T cells can still undergo apoptotic cell death in vivo in response to alloantigen stimulation. Our study suggests that: 1) Fas is not necessarily essential for allograft tolerance, and 2) Fas-mediated apoptosis is not central to the IL-2-dependent mechanism governing the acquisition of allograft tolerance.  相似文献   

6.
Specific tolerance to allografts has been achieved by a variety of means. We have previously shown that ex vivo removal of dividing CD4(+) T cells from an MLR or "pruning" delays skin allograft rejection. We tested pruning of alloreactive T cells as a strategy for retaining a broad T cell repertoire while removing alloreactive T cells in a model of cardiac allograft transplant. Using CFSE staining of responder BALB/c cells with stimulator C57BL/6 cells in an MLR, SCID mice were reconstituted with either dividing (D) or nondividing (ND) CD4(+) T cells derived from an MLR and then challenged with heterotopic cardiac allografts. Mice reconstituted with D CD4(+) T cells rejected cardiac allografts from the stimulator strain with a median survival time (MST) of 29 days, while mice reconstituted with ND CD4(+) T cells maintained allografts from the stimulator strain (MST of >100 days) while rejecting third-party allografts (B10.BR) (MST = 11 days). ELISPOT assays demonstrate donor-specific hyporesponsiveness of the ND CD4(+) T cells. TCR beta-chain V region (TRBV) repertoire analysis demonstrates clonal expansion within both rejecting D cardiac allografts and ND cardiac allografts surviving for the long-term. Histology showed greater allograft infiltration by the D CD4(+) T cells. The surviving ND cardiac allografts demonstrated reduced cellular infiltration and reduced incidence of allograft vasculopathy, but with the development of chronic fibrosis. Thus, pruning of alloreactive T cells allows long-term-specific cardiac allograft survival while retaining the ability to reject third-party allografts.  相似文献   

7.
A portal venous injection of allogeneic donor cells is known to prolong the survival of subsequently transplanted allografts. In this study, we investigated the role of liver sinusoidal endothelial cells (LSECs) in immunosuppressive effects induced by a portal injection of allogeneic cells on T cells with indirect allospecificity. To eliminate the direct CD4+ T cell response, C57BL/6 (B6) MHC class II-deficient C2tatm1Ccum (C2D) mice were used as donors. After portal injection of irradiated B6 C2D splenocytes into BALB/c mice, the host LSECs that endocytosed the irradiated allogeneic splenocytes showed enhanced expression of MHC class II molecules, CD80, and Fas ligand (FasL). Due to transmigration across the LSECs from BALB/c mice treated with a portal injection of B6 C2D splenocytes, the naive BALB/c CD4+ T cells lost their responsiveness to stimulus of BALB/c splenic APCs that endocytose donor-type B6 C2D alloantigens, while maintaining a normal response to stimulus of BALB/c splenic APCs that endocytose third-party C3H alloantigens. Similar results were not observed for naive BALB/c CD4+ T cells that transmigrated across the LSECs from BALB/c FasL-deficient mice treated with a portal injection of B6 C2D splenocytes. Adaptive transfer of BALB/c LSECs that had endocytosed B6 C2D splenocytes into BALB/c mice via the portal vein prolonged the survival of subsequently transplanted B6 C2D hearts; however, a similar effect was not observed for BALB/c FasL-deficient LSECs. These findings indicate that LSECs that had endocytosed allogeneic splenocytes have immunosuppressive effects on T cells with indirect allospecificity, at least partially via the Fas/FasL pathway.  相似文献   

8.
Long-term lymphoid bone marrow cultures (LBMC) produce B lymphocytes and their precursors for several months in vitro. To assess their differentiative potential and determine their capacity to function as immune effectors, cells from the cultures were transplanted into mice with severe combined immune deficiency disease (SCID). SCID mice are deficient in T and B lymphocytes and are serum immunoglobulin (Ig) negative, but grafts of normal lymphoid precursors can expand and differentiate in them, thereby restoring immunocompetence. The results of these studies indicate that cells from LBMC are able to reconstitute splenic B lymphocytes in the SCID mice. Upon in vivo transfer, LBMC cells secreted Ig that displayed isotype distribution and a pattern of heterogeneity comparable with normal BALB/c mice, as determined by two-dimensional gel electrophoresis. The transplanted LBMC cells were functional, because reconstituted mice could respond to immunization with the T-independent antigen TNP-Ficoll. The results also indicate that cultured cells could reconstitute T cell activity in SCID mice. Splenocytes from approximately one-third of the recipients could generate a cytotoxic response to alloantigens after 5 days of sensitization in a mixed lymphocyte culture, and all reconstituted SCID mice could respond to immunization with the T cell-dependent antigen TNP-BSA. These results demonstrate that B cells, as well as T cell activity, are present in LBMC-reconstituted SCID mice, and show that LBMC cells have the capacity to mediate an immune response.  相似文献   

9.
It is clear that the development of an autoimmune disease usually depends on both a genetic predisposition and an environmental trigger. In this study, we demonstrate that BALB/c mice develop a lupus-like serology following immunization with a peptide mimetope of DNA, while DBA/2 mice do not. We further demonstrate that the critical difference resides within the B cell compartment and that the naive B cell repertoire of DBA/2 mice has fewer B cells specific for the DNA mimetope. Differences in the strength of B cell receptor signaling exist between these two strains and may be responsible for the difference in disease susceptibility. BALB/c mice possess more autoreactive cells in the native repertoire; they display a weaker response to Ag and exhibit less Ag-induced apoptosis of B cells. DBA/2 mice, in contrast, display a stronger B cell receptor signal and more stringent central tolerance. This correlates with resistance to lupus induction. Thus, the degree to which autoreactive B cells have been eliminated from the naive B cell repertoire is genetically regulated and may determine whether a nonspontaneously autoimmune host will develop autoimmunity following exposure to Ag.  相似文献   

10.
The development of T cells and the selection of the TCR repertoire in the absence of exogenous antigenic stimulation were investigated. For this purpose germfree BALB/c mice fed an ultrafiltered solution of chemically defined low m.w. nutrients (GF-CD) were used. Previous studies on B cell development and differentiation in GF-CD mice have demonstrated a high reduction in the number of cells secreting Ig of the non-IgM isotypes but an Ig-VH gene usage and a B cell specificity repertoire that is substantially different from that observed in conventional adult mice and more closely resembles that of neonatal conventional mice. In contrast, the present comparison of the various lymphocyte populations in the thymus, lymph nodes, and spleen from GF-CD and conventional mice using flow cytometry analysis revealed no significant differences. Analysis of the TCR-V beta expression on both mature thymocytes and lymph node T cells showed a high degree of similarity between GF-CD and conventional mice. These findings indicate a marked difference in the influence of exogenous antigenic stimulation on the development of B and T cells. Additionally, development in an environment free of exogenous antigenic stimulation allows for full functional maturation of T cells to occur, because MLC showed that GF-CD splenic T cells could mount allogeneic responses in a way similar to T cells generated in a conventional environment. Most importantly, full Th cell function is generated, because activation of GF-CD spleen cells by cross-linking with mAb against CD3 resulted in the induction of cells secreting IFN-gamma and Ig of the non-IgM isotypes, which cannot be detected in GF-CD sera. These findings demonstrate that functional T and B cells develop in mice that have not been exposed to exogenous Ag, and that the TCR repertoire, in contrast to the B cell compartment, is predominantly shaped by endogenously expressed Ag.  相似文献   

11.
Aging is associated with increasing prevalence and severity of infections caused by a decline in bone marrow (BM) lymphopoiesis and reduced B‐cell repertoire diversity. The current study proposes a strategy to enhance immune responsiveness in aged mice and humans, through rejuvenation of the B lineage upon B‐cell depletion. We used hCD20Tg mice to deplete peripheral B cells in old and young mice, analyzing B‐cell subsets, repertoire and cellular functions in vitro, and immune responsiveness in vivo. Additionally, elderly patients, previously treated with rituximab healthy elderly and young individuals, were vaccinated against hepatitis B (HBV) after undergoing a detailed analysis for B‐cell compartments. B‐cell depletion in old mice resulted in rejuvenated B‐cell population that was derived from de novo synthesis in the bone marrow. The rejuvenated B cells exhibited a "young"‐like repertoire and cellular responsiveness to immune stimuli in vitro. Yet, mice treated with B‐cell depletion did not mount enhanced antibody responses to immunization in vivo, nor did they survive longer than control mice in "dirty" environment. Consistent with these results, peripheral B cells from elderly depleted patients showed a "young"‐like repertoire, population dynamics, and cellular responsiveness to stimulus. Nevertheless, the response rate to HBV vaccination was similar between elderly depleted and nondepleted subjects, although antibody titers were higher in depleted patients. This study proposes a proof of principle to rejuvenate the peripheral B‐cell compartment in aging, through B‐cell depletion. Further studies are warranted in order to apply this approach for enhancing humoral immune responsiveness among the elderly population.  相似文献   

12.
Central transplantation tolerance through hemopoietic chimerism initially requires inhibition of allogeneic stem cell or bone marrow (BM) rejection, as previously achieved in murine models by combinations of T cell costimulation blockade. We have evaluated LFA-1 blockade as part of regimens to support mixed hemopoietic chimerism development upon fully allogeneic BALB/c BM transfer to nonirradiated busulfan-treated B6 recipient mice. Combining anti-LFA-1 with anti-CD40 ligand (CD40L) induced high incidences and levels of stable multilineage hemopoietic chimerism comparable to chimerism achieved with anti-CD40L and everolimus (40-O-(2-hydroxyethyl)-rapamycin) under conditions where neither Ab alone was effective. The combination of anti-LFA-1 with everolimus also resulted in high levels of chimerism, albeit with a lower incidence of stability. Inhibition of acute allograft rejection critically depended on chimerism stability, even if maintained at very low levels around 1%, as was the case for some recipients without busulfan conditioning. Chimerism stability correlated with a significant donor BM-dependent loss of host-derived Vbeta11(+) T cells 3 mo after BM transplantation (Tx). Combinations of anti-CD40L with anti-LFA-1 or everolimus also prevented acute rejection of skin allografts transplanted before established chimerism, albeit not independently of allospecific BMTx. All skin and heart allografts transplanted to stable chimeras 3 and 5 mo after BMTx, respectively, were protected from acute rejection. Moreover, this included prevention of heart allograft vascular intimal thickening ("chronic rejection").  相似文献   

13.
Nonobese diabetic (NOD) mice develop spontaneous autoimmune diabetes that involves participation of both CD4+ and CD8+ T cells. Previous studies have demonstrated spontaneous reactivity to self-Ags within the CD4+ T cell compartment in this strain. Whether CD8+ T cells in NOD mice achieve and maintain tolerance to self-Ags has not previously been evaluated. To investigate this issue, we have assessed the extent of tolerance to a model pancreatic Ag, the hemagglutinin (HA) molecule of influenza virus, that is transgenically expressed by pancreatic islet beta cells in InsHA mice. Previous studies have demonstrated that BALB/c and B10.D2 mice that express this transgene exhibit tolerance of HA and retain only low-avidity CD8+ T cells specific for the dominant peptide epitope of HA. In this study, we present data that demonstrate a deficiency in peripheral tolerance within the CD8+ T cell repertoire of NOD-InsHA mice. CD8+ T cells can be obtained from NOD-InsHA mice that exhibit high avidity for HA, as measured by tetramer (K(d)HA) binding and dose titration analysis. Significantly, these autoreactive CD8+ T cells can cause diabetes very rapidly upon adoptive transfer into NOD-InsHA recipient mice. The data presented demonstrate a retention in the repertoire of CD8+ T cells with high avidity for islet Ags that could contribute to autoimmune diabetes in NOD mice.  相似文献   

14.
B cell-deficient nonobese diabetic (NOD) mice are protected from the development of spontaneous autoimmune diabetes, suggesting a requisite role for Ag presentation by B lymphocytes for the activation of a diabetogenic T cell repertoire. This study specifically examines the importance of B cell-mediated MHC class II Ag presentation as a regulator of peripheral T cell tolerance to islet beta cells. We describe the construction of NOD mice with an I-Ag7 deficiency confined to the B cell compartment. Analysis of these mice, termed NOD BCIID, revealed the presence of functionally competent non-B cell APCs (macrophages/dendritic cells) with normal I-Ag7 expression and capable of activating Ag-reactive T cells. In addition, the secondary lymphoid organs of these mice harbored phenotypically normal CD4+ and CD8+ T cell compartments. Interestingly, whereas control NOD mice harboring I-Ag7-sufficient B cells developed diabetes spontaneously, NOD BCIID mice were resistant to the development of autoimmune diabetes. Despite their diabetes resistance, histologic examination of pancreata from NOD BCIID mice revealed foci of noninvasive peri-insulitis that could be intentionally converted into a destructive process upon treatment with cyclophosphamide. We conclude that I-Ag7-mediated Ag presentation by B cells serves to overcome a checkpoint in T cell tolerance to islet beta cells after their initial targeting has occurred. Overall, this work indicates that the full expression of the autoimmune potential of anti-islet T cells in NOD mice is intimately regulated by B cell-mediated MHC class II Ag presentation.  相似文献   

15.
To follow the fate of alloreactive T cell effectors in graft-vs-host disease, Ld-specific CD8+ T cells from C57BL/6 2C TCR-transgenic donors were transplanted into sublethally irradiated (750 cGy) Ld+ or Ld- recipients. In Ld- C57BL/6 or (BALB/c-dm2 x C57BL/6)F1 recipients, naive 2C T cells engrafted and survived long term, but did not acquire effector function. In Ld+ (BALB/c x C57BL/6)F1 recipients, 2C T cells engrafted, expanded, became cytolytic, destroyed host B cells and double-positive thymocytes, and later disappeared. Despite marked damage to lymphoid and hemopoietic cells by 2C T cells, no significant pathology was detected in other organs, and recipients survived. Ld+ (BALB/c x C57BL/6)F1 recipients died when LPS/endotoxin was administered on day 7 after cell transfer, while Ld- (BALB/c-dm2 x C57BL/6)F1 recipients survived. Our findings show that under certain conditions, a CD8+ T cell population recognizing an extremely limited repertoire of Ags can initiate graft-vs-host disease.  相似文献   

16.
The present study investigates the distinctiveness of Class I H-2 alloantigen-reactive Lyt-2+ helper/proliferative T cell subset in the aspect of tolerance induction. Primary mixed lymphocyte reactions (MLR) revealed that Lyt-2+ and L3T4+ T cell subsets from C57BL/6 (B6) mice were exclusively capable of responding to class I H-2 [B6-C-H-2bm1 (bm1)]- and class II H-2 [B6-C-H-2bm12 (bm12)]-alloantigens, respectively. Anti-bm12 MLR was not affected by i.v. injection of bm12 spleen cells into recipient B6 mice. In contrast, a single i.v. administration of bm1 spleen cells into B6 mice resulted in the abrogation of the capacity of recipient B6 spleen and lymph node cells to give anti-bm1 MLR. This suppression was bm1 alloantigen-specific, since lymphoid cells from B6 mice i.v. presensitized with bm1 cells exhibited comparable anti-bm12 primary MLR to that obtained by normal B6 lymphoid cells. Such tolerance was rapidly (24 h after the i.v. injection of bm1 cells) inducible and lasting for at shortest 3 wk. Addition of lymphoid cells from anti-bm1-tolerant B6 mice to cultures of normal B6 lymphoid cells did not suppress the proliferative responses of the latter cells, indicating that the tolerance is not due to the induction of suppressor cells but attributed to the elimination or functional impairment of anti-bm1 proliferative clones. The tolerance was also demonstrated by the failure of tolerant lymphoid cells to produce IL-2. It was, however, found that anti-bm1 CTL responses were generated by tolerant lymphoid cells which were unable to induce the anti-bm1 MLR nor to produce detectable level of IL-2. These results demonstrate that class I H-2 alloantigen-reactive Lyt-2+ Th cell subset exhibits a distinct property which is expressed by neither Lyt-2+ CTL directed to class I H-2 nor L3T4+ Th cells to class II H-2 alloantigens.  相似文献   

17.
Despite the recognition that humoral rejection is an important cause of allograft injury, the mechanism of Ab-mediated injury to allograft parenchyma is not well understood. We used a well-characterized murine hepatocellular allograft model to determine the mechanism of Ab-mediated destruction of transplanted liver parenchymal cells. In this model, allogeneic hepatocytes are transplanted into CD8-deficient hosts to focus on CD4-dependent, alloantibody-mediated rejection. Host serum alloantibody levels correlated with in vivo allospecific cytotoxic activity in CD8 knockout hepatocyte rejector mice. Host macrophage depletion, but not CD4(+) T cell, NK cell, neutrophil, or complement depletion, inhibited in vivo allocytotoxicity. Recipient macrophage deficiency delayed CD4-dependent hepatocyte rejection and inhibited in vivo allocytotoxicity without influencing alloantibody production. Furthermore, hepatocyte coincubation with alloantibody and macrophages resulted in Ab-dependent hepatocellular cytotoxicity in vitro. These studies are consistent with a paradigm of acute humoral rejection in which CD4(+) T cell-dependent alloantibody production results in the targeting of transplanted allogeneic parenchymal cells for macrophage-mediated cytotoxic immune damage. Consequently, strategies to eliminate recipient macrophages during CD4-dependent rejection pathway may prolong allograft survival.  相似文献   

18.
BALB/c mice given total lymphoid irradiations (TLI) were injected i.p. with bovine serum albumin (BSA) in saline, and challenged with DNP-BSA in complete Freund's adjuvant 6 weeks later. The latter animals made no anti-DNP antibody response as measured by a modified Farr assay, but made a normal anti-DNP response after challenge with DNP-BGG in adjuvant. Normal mice or mice given whole body irradiation were not tolerized by the i.p. injection of BSA in saline. Spleen cells from unresponsive mice (TLI + BSA in saline) suppressed the adoptive secondary anti-DNP response of sublethally irradiated syngeneic hosts given BSA-primed T cells, DNP-BSA-primed B cells, and DNP-BSA in saline. The suppressor cells were antigen specific, and were inactivated by in vitro treatment with anti-Thy 1.2 antiserum and complement. The findings suggest that soluble antigens administered to mice after TLI evoke a state of tolerance that is maintained by antigen-specific suppressor T cells. A similar mechanism may be involved in the maintenance of tolerance to allografts. These findings may have important clinical implications for patients treated with TLI for lymphoid malignancies.  相似文献   

19.
Donor-specific blood transfusion (DST), designed to prolong allograft survival, sensitized recipients of the high-responder PVG-RT1u strain, resulting in accelerated rejection of MHC-class I mismatched (PVG-R8) allografts. Rejection was found to be mediated by anti-MHC class I (Aa) alloantibody. By pretreating recipients 4 wk before grafting with cyclosporin A (CsA) daily (x7), combined with once weekly (x4) DST, rejection was prevented. The investigation explores the mechanism for this induced unresponsiveness. CD4 T cells purified from the thoracic duct of CsA/DST-pretreated RT1u rats induced rejection when transferred to R8 heart-grafted RT1u athymic nude recipients, indicating that CD4 T cells were not tolerized by the pretreatment. To determine whether B cells were affected, nude recipients were pretreated, in the absence of T cells, with CsA/DST (or CsA/third party blood) 4 wk before grafting. The subsequent transfer of normal CD4 T cells induced acute rejection of R8 cardiac allografts in third party- but not DST-pretreated recipients; prolonged allograft survival was reversed by the cotransfer of B cells with the CD4 T cells. Graft survival correlated with reduced production of anti-MHC class I (Aa) cytotoxic alloantibody. The results indicated that the combined pretransplant treatment of CsA and DST induced tolerance in allospecific B cells independently of T cells. The resulting suppression of allospecific cytotoxic Ab correlated with the survival of MHC class I mismatched allografts. The induction of B cell tolerance by CsA has important implications for clinical transplantation.  相似文献   

20.
There is a considerable amount of evidence, confirmed and extended by our studies, in favor of clonal deletion of alloantigen-reactive cells in neonatally induced transplantation tolerance. We have demonstrated in adult mice bearing long-standing skin allografts that lymphocytes specifically reactive with the tolerated H-2 alloantigens are undetectable by mixed lymphocyte and graftversus-host reactions, and in cell-mediated lympholysis. In addition, lymphoid cells capable of suppressing the reactivity of syngeneic normal lymphocytes in these assays similarly escape detection. Moreover, putative precursors of T cells specific for the tolerated antigens cannot be activated polyclonally with concanavalin A (Con A), nor can they be identified among thymocytes ofH-2-tolerant mice. Since the tolerant state can be adoptively transferred with lymphohematopoietic cells to adult, syngeneic mice, we infer that transplantation tolerance is maintained by an active process that achieves specific clonal deletion at an early stage in the ontogeny of alloreactive T lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号