首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High glucose (30 mM) and high insulin (1 nM), pathogenic factors of type 2 diabetes, increased mRNA expression and synthesis of lamininbeta1 and fibronectin after 24 h of incubation in kidney proximal tubular epithelial (MCT) cells. We tested the hypothesis that inactivation of glycogen synthase kinase 3beta (GSK3beta) by high glucose and high insulin induces increase in synthesis of laminin beta1 via activation of eIF2Bepsilon. Both high glucose and high insulin induced Ser-9 phosphorylation and inactivation of GSK3beta at 2 h that lasted for up to 48 h. This was associated with dephosphorylation of eIF2Bepsilon and eEF2, and increase in phosphorylation of 4E-BP1 and eIF4E. Expression of the kinase-dead mutant of GSK3beta or constitutively active kinase led to increased and diminished laminin beta1 synthesis, respectively. Incubation with selective kinase inhibitors showed that high glucose- and high insulin-induced laminin beta1 synthesis and phosphorylation of GSK3beta were dependent on PI 3-kinase, Erk, and mTOR. High glucose and high insulin augmented activation of Akt, Erk, and p70S6 kinase. Dominant negative Akt, but not dominant negative p70S6 kinase, inhibited GSK3beta phosphorylation induced by high glucose and high insulin, suggesting Akt but not p70S6 kinase was upstream of GSK3beta. Status of GSK3beta was examined in vivo in renal cortex of db/db mice with type 2 diabetes at 2 weeks and 2 months of diabetes. Diabetic mice showed increased phosphorylation of renal cortical GSK3beta and decreased phosphorylation of eIF2Bepsilon, which correlated with renal hypertrophy at 2 weeks, and increased laminin beta1 and fibronectin protein content at 2 months. GSK3beta and eIF2Bepsilon play a role in augmented protein synthesis associated with high glucose- and high insulin-stimulated hypertrophy and matrix accumulation in renal disease in type 2 diabetes.  相似文献   

2.
The mechanisms by which insulin-like growth factor I (IGF-I) and insulin regulate eukaryotic initiation factor (eIF)4F formation were examined in the ovine fetus. Insulin infusion increased phosphorylation of eIF4E-binding protein (4E-BP1) in muscle and liver. IGF-I infusion did not alter 4E-BP1 phosphorylation in liver. In muscle, IGF-I increased 4E-BP1 phosphorylation by 27%; the percentage in the gamma-form in the IGF-I group was significantly lower than that in the insulin group. In liver, only IGF-I increased eIF4G. Both IGF-I and insulin increased eIF4E. eIF4G binding in muscle, but only insulin decreased the amount of 4E-BP1 associated with eIF4E. In liver, only IGF-I increased eIF4E. eIF4G binding. Insulin increased the phosphorylation of p70 S6 kinase (p70(S6k)) in both muscle and liver and protein kinase B (PKB/Akt) in muscle, two indicative signal proteins in the phosphatidylinositol (PI) 3-kinase pathway. IGF-I increased PKB/Akt phosphorylation in muscle but had no effect on p70(S6k) phosphorylation in muscle or liver. We conclude that insulin and IGF-I modulate eIF4F formation; however, the two hormones have different regulatory mechanisms. Insulin increases phosphorylation of 4E-BP1 and eIF4E. eIF4G binding in muscle, whereas IGF-I regulates eIF4F formation by increasing total eIF4G. Insulin, but not IGF-I, decreased 4E-BP1 content associated with eIF4E. Insulin regulates translation initiation via the PI 3-kinase-p70(S6k) pathway, whereas IGF-I does so mainly via mechanisms independent of the PI 3-kinase-p70(S6k) pathway.  相似文献   

3.
D2/D3 dopamine receptors (D2R/D3R) agonists regulate Akt, but their effects display a complex time‐course. In addition, the respective roles of D2R and D3R are not defined and downstream targets remain poorly characterized, especially in vivo. These issues were addressed here for D3R. Systemic administration of quinelorane, a D2R/D3R agonist, transiently increased phosphorylation of Akt and GSK‐3β in rat nucleus accumbens and dorsal striatum with maximal effects 10 min after injection. Akt activation was associated with phosphorylation of several effectors of the mammalian target of rapamycin complex 1 (mTORC1): p70S6 kinase, ribosomal protein‐S6 (Ser240/244), and eukaryotic initiation factor‐4E binding protein‐1. The action of quinelorane was antagonized by a D2/D3R antagonist, raclopride, and the selective D3R antagonist S33084, inactive by themselves. Furthermore, no effect of quinerolane was seen in knock‐out mice lacking D3R. In drd1a‐EGFP transgenic mice, quinelorane activated Akt/GSK‐3β in both neurons expressing and lacking D1 receptor. Thus, the stimulation of D3R transiently activates the Akt/GSK‐3β pathway in the two populations of medium‐size spiny neurons of the nucleus accumbens and dorsal striatum. This effect may contribute to the influence of D3R ligands on reward, cognition, and processes disrupted in schizophrenia, drug abuse, and Parkinson's disease.  相似文献   

4.
5.
In the present study, the BCAAs (branched-chain amino acids) leucine and valine caused a significant suppression in the loss of body weight in mice bearing a cachexia-inducing tumour (MAC16), producing a significant increase in skeletal muscle wet weight, through an increase in protein synthesis and a decrease in degradation. Leucine attenuated the increased phosphorylation of PKR (double-stranded-RNA-dependent protein kinase) and eIF2alpha (eukaryotic initiation factor 2alpha) in skeletal muscle of mice bearing the MAC16 tumour, due to an increased expression of PP1 (protein phosphatase 1). Weight loss in mice bearing the MAC16 tumour was associated with an increased amount of eIF4E bound to its binding protein 4E-BP1 (eIF4E-binding protein 1), and a progressive decrease in the active eIF4G-eIF4E complex due to hypophosphorylation of 4E-BP1. This may be due to a reduction in the phosphorylation of mTOR (mammalian target of rapamycin), which may also be responsible for the decreased phosphorylation of p70(S6k) (70 kDa ribosomal S6 kinase). There was also a 5-fold increase in the phosphorylation of eEF2 (eukaryotic elongation factor 2), which would also decrease protein synthesis through a decrease in translation elongation. Treatment with leucine increased phosphorylation of mTOR and p70(S6k), caused hyperphosphorylation of 4E-BP1, reduced the amount of 4E-BP1 associated with eIF4E and caused an increase in the eIF4G-eIF4E complex, together with a reduction in phosphorylation of eEF2. These changes would be expected to increase protein synthesis, whereas a reduction in the activation of PKR would be expected to attenuate the increased protein degradation.  相似文献   

6.
High glucose-induced protein synthesis in the glomerular epithelial cell (GEC) is partly dependent on reduction in phosphorylation of AMP-activated protein kinase (AMPK). We evaluated the effect of resveratrol, a phytophenol known to stimulate AMPK, on protein synthesis. Resveratrol completely inhibited high glucose stimulation of protein synthesis and synthesis of fibronectin, an important matrix protein, at 3 days. Resveratrol dose-dependently increased AMPK phosphorylation and abolished high glucose-induced reduction in its phosphorylation. We examined the effect of resveratrol on critical steps in mRNA translation, a critical event in protein synthesis. Resveratrol inhibited high glucose-induced changes in association of eIF4E with eIF4G, phosphorylation of eIF4E, eEF2, eEF2 kinase and, p70S6 kinase, indicating that it affects important events in both initiation and elongation phases of mRNA translation. Upstream regulators of AMPK in high glucose-treated GEC were explored. High glucose augmented acetylation of LKB1, the upstream kinase for AMPK, and inhibited its activity. Resveratrol prevented acetylation of LKB1 and restored its activity in high glucose-treated cells; this action did not appear to depend on SIRT1, a class III histone deacetylase. Our data show that resveratrol ameliorates protein synthesis by regulating the LKB1–AMPK axis.  相似文献   

7.
To understand the role of arachidonic acid (AA) in regulating vascular smooth muscle cell (VSMC) growth, its effects on phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E were studied. Arachidonic acid stimulated phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E in a time-dependent manner in VSMC. Arachidonic acid stimulation of phosphorylation of the above signaling molecules is specific, as these events were not affected by other unsaturated or saturated fatty acids. Metabolic conversion of AA via the LOX/MOX and/or COX pathways, to some extent, was required for its effects on the phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E. In addition, AA increased PI3K activity in a time-dependent manner in VSMC. LY294002, an inhibitor of PI3K, completely blocked AA-induced phosphorylation of Akt, S6K1, ribosomal protein S6, 4EBP1, and eIF4E, suggesting a role for PI3K in these effects. Consistent with its effects on translation initiation signaling events, AA induced global protein synthesis in VSMC and this response was dependent, to some extent, on its metabolism via the LOX/MOX and/or COX pathways, and mediated by the PI3K/Akt/mTOR pathway. Thus, the above observations provide the first biochemical evidence for the role of AA in the activation of translation initiation signaling in VSMC.  相似文献   

8.
Stimulation of serum-starved human embryonic kidney (HEK) 293 cells with either the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), or insulin resulted in increases in the phosphorylation of 4E-BP1 and p70 S6 kinase, eIF4F assembly, and protein synthesis. All these effects were blocked by rapamycin, a specific inhibitor of mTOR. Phosphatidylinositol 3-kinase and protein kinase B were activated by insulin but not by TPA. Therefore TPA can induce eIF4F assembly, protein synthesis, and the phosphorylation of p70 S6 kinase and 4E-BP1 independently of both phosphatidylinositol 3-kinase and protein kinase B. Using two structurally unrelated inhibitors of MEK (PD098059 and U0126), we provide evidence that Erk activation is important in TPA stimulation of eIF4F assembly and the phosphorylation of p70 S6 kinase and 4E-BP1 and that basal MEK activity is important for basal, insulin, and TPA-stimulated protein synthesis. Transient transfection of constitutively active mitogen-activated protein kinase interacting kinase 1 (the eIF4E kinase) indicated that inhibition of protein synthesis and eIF4F assembly by PD098059 is not through inhibition of eIF4E phosphorylation but of other signals emanating from MEK. This report also provides evidence that increased eIF4E phosphorylation alone does not affect the assembly of the eIF4F complex or general protein synthesis.  相似文献   

9.
Regulation of translation of mRNAs coding for specific proteins plays an important role in controlling cell growth, differentiation, and transformation. Two proteins have been implicated in the regulation of specific mRNA translation: eukaryotic initiation factor eIF4E and ribosomal protein S6. Increased phosphorylation of eIF4E as well as its overexpression are associated with stimulation of translation of mRNAs with highly structured 5'-untranslated regions. Similarly, phosphorylation of S6 results in preferential translation of mRNAs containing an oligopyrimidine tract at the 5'-end of the message. In the present study, leucine stimulated phosphorylation of the eIF4E-binding protein, 4E-BP1, in L6 myoblasts, resulting in dissociation of eIF4E from the inactive eIF4E.4E-BP1 complex. The increased availability of eIF4E was associated with a 1.6-fold elevation in ornithine decarboxylase relative to global protein synthesis. Leucine also stimulated phosphorylation of the ribosomal protein S6 kinase, p70(S6k), resulting in increased phosphorylation of S6. Hyperphosphorylation of S6 was associated with a 4-fold increase in synthesis of elongation factor eEF1A. Rapamycin, an inhibitor of the protein kinase mTOR, prevented all of the leucine-induced effects. Thus, leucine acting through an mTOR-dependent pathway stimulates the translation of specific mRNAs both by increasing the availability of eIF4E and by stimulating phosphorylation of S6.  相似文献   

10.
11.
Angiotensin IV (Ang IV)-stimulated cell proliferation is regulated through activation of multiple signaling modules in lung endothelial cells (EC). Because eukaryotic intitiation factor 4E (eIF4E) binding protein 1 (4EBP1) plays a critical role in the RNA translation and the regulation of cell growth, we examined whether Ang IV modulates expression and/or phosphorylation of eIF4E and 4EBP1 as well as the role of multiple signaling events associated with 4EBP1 phosphorylation in EC. Ang IV stimulation increased phosphorylation but not expression of eIF4E and 4EBP1 proteins. Ang IV stimulation selectively phosphorylated Thr46 > Thr70 > Ser65 but not Thr37 residues in 4EBP1. Pretreatment of cells with PD-98059 and rapamycin, inhibitors of mitogen-activated protein kinase (ERK1/2) and mammalian target for rapamycin (mTOR), respectively, partially blocked Ang IV-mediated phosphorylation of 4EBP1. In contrast, overexpression of p70 ribosomal S6 kinase (p70S6K) and protein kinase B (Akt) enhanced phosphorylation of 4EBP1 and eIF4E binding affinity to the cap region of mRNA. These results support critical roles of multiple signaling and phosphorylation of 4EBP1 by Ang IV in translation process and protein synthesis.  相似文献   

12.
Eukaryotic translation initiation factor 4E (eIF4E) is the mRNA 5' cap binding protein, which plays an important role in the control of translation. The activity of eIF4E is regulated by a family of repressor proteins, the 4E-binding proteins (4E-BPs), whose binding to eIF4E is determined by their phosphorylation state. When hyperphosphorylated, 4E-BPs do not bind to eIF4E. Phosphorylation of the 4E-BPs is effected by the phosphatidylinositol (PI) 3-kinase signal transduction pathway and is inhibited by rapamycin through its binding to FRAP/mTOR (FK506 binding protein-rapamycin-associated protein or mammalian target of rapamycin). Phosphorylation of 4E-BPs can also be induced by protein synthesis inhibitors. These observations led to the proposal that FRAP/mTOR functions as a "sensor" of the translational apparatus (E. J. Brown and S. L. Schreiber, Cell 86:517-520, 1996). To test this model, we have employed the tetracycline-inducible system to increase eIF4E expression. Removal of tetracycline induced eIF4E expression up to fivefold over endogenous levels. Strikingly, upon induction of eIF4E, 4E-BP1 became dephosphorylated and the extent of dephosphorylation was proportional to the expression level of eIF4E. Dephosphorylation of p70(S6k) also occurred upon eIF4E induction. In contrast, the phosphorylation of Akt, an upstream effector of both p70(S6k) and 4E-BP phosphorylation, was not affected by eIF4E induction. We conclude that eIF4E engenders a negative feedback loop that targets a component of the PI 3-kinase signalling pathway which lies downstream of PI 3-kinase.  相似文献   

13.
Recent evidence supports that TNF-alpha, long considered a catabolic factor, may also have a physiological function in skeletal muscle. The catabolic view, mainly based on correlative studies in human and in vivo animal models, was challenged by experiments with myoblasts, in which TNF-alpha induced differentiation. The biological effects of TNF-alpha in differentiated muscle, however, remain poorly understood. In the present study, we tested whether TNF-alpha has growth-promoting effects in myotubes, and we characterized the mechanisms leading to these effects. Treatment of C(2)C(12) myotubes with TNF-alpha for 24 h increased protein synthesis (PS) and enhanced cellular dehydrogenase activity by 22 and 26%, respectively, without changing cell numbers. These effects were confirmed in myotubes differentiated from primary rat myoblasts. TNF-alpha activated two signaling cascades: 1) ERK1/2 and its target eIF4E and 2) Akt and its downstream effectors GSK-3, p70(S6K), and 4E-BP1. TNF-alpha-induced phosphorylation of Akt, and ERK1/2 was inhibited by an antibody against TNF-alpha receptor 1 (TNF-R1). PD-98059 pretreatment abolished TNF-alpha-induced phosphorylation of ERK1/2 and eIF4E, whereas PS was only partially inhibited. LY-294002 completely abolished TNF-alpha-induced stimulation of PS as well as phosphorylation of Akt and its downstream targets GSK-3, p70(S6K), and 4E-BP1. Rapamycin inhibited TNF-alpha-induced phosphorylation of the mTOR C1 target p70(S6K) without altering TNF-alpha-induced PS and 4E-BP1 phosphorylation. In conclusion, our results provide evidence that TNF-alpha enhances PS in myotubes and that this is based on enhanced protein translation mediated by the TNF-R1 and PI3K-Akt and MEK-ERK signaling cascades.  相似文献   

14.
The present study was performed to evaluate the insulin-like effects of zinc in normal L6 myotubes as well as its ability to alleviate insulin resistance. Glucose consumption was measured in both normal and insulin-resistant L6 myotubes. Western blotting and immunofluorescence revealed that zinc exhibited insulin-like glucose transporting effects by activating key markers that are involved in the insulin signaling cascade (including Akt, GLUT4 and GSK3β), and downregulating members of the insulin signaling feedback cascade such as mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase (S6K1). In normal L6 myotubes, zinc enhanced glucose consumption via a mechanism that might involve the activation of Akt phosphorylation, glucose transporter 4 (GLUT4) translocation and GSK3β phosphorylation. In contrast, zinc exerted insulin-mimetic effects in insulin-resistant L6 myotubes by upregulating Akt phosphorylation, GLUT4 translocation and GSK3β phosphorylation, and downregulating the expression of mTOR and S6K1. In conclusion, zinc might enhance glucose consumption by modulating insulin signaling pathways including Akt–GLUT4, GSK3β, mTOR and S6K1.  相似文献   

15.
To understand the mechanisms of prostaglandin F2alpha (PGF2alpha)-induced protein synthesis in vascular smooth muscle cells (VSMC), we have studied its effect on two major signal transduction pathways: mitogen-activated protein kinases and phosphatidylinositol 3-kinase (PI3-kinase) and their downstream targets ribosomal protein S6 kinase (p70(S6k)) and eukaryotic initiation factor eIF4E and its regulator 4E-BP1. PGF2alpha induced the activities of extracellular signal-regulated kinase 2 (ERK2) and Jun N-terminal kinase 1 (JNK1) groups of mitogen-activated protein kinases, PI3-kinase, and p70(S6k) in a time-dependent manner in growth-arrested VSMC. PGF2alpha also induced eIF4E and 4E-BP1 phosphorylation, global protein synthesis, and basic fibroblast growth factor-2 (bFGF-2) expression in VSMC. Whereas inhibition of PI3-kinase by wortmannin completely blocked the p70(S6k) activation, it only partially decreased the ERK2 activity, and had no significant effect on global protein synthesis and bFGF-2 expression induced by PGF2alpha. Rapamycin, a potent inhibitor of p70(S6k), also failed to prevent PGF2alpha-induced global protein synthesis and bFGF-2 expression, although it partially decreased ERK2 activity. In contrast, inhibition of ERK2 activity by PD 098059 led to a significant loss of PGF2alpha-induced eIF4E and 4E-BP1 phosphorylation, global protein synthesis, and bFGF-2 expression. PGF2alpha-induced phosphorylation of eIF4E and 4E-BP1 was also found to be sensitive to inhibition by both wortmannin and rapamycin. These findings demonstrate that 1) PI3-kinase-dependent and independent mechanisms appear to be involved in PGF2alpha-induced activation of ERK2; 2) PGF2alpha-induced eIF4E and 4E-BP1 phosphorylation appear to be mediated by both ERK-dependent and PI3-kinase-dependent rapamycin-sensitive mechanisms; and 3) ERK-dependent eIF4E phosphorylation but not PI3-kinase-dependent p70(S6k) activation correlates with PGF2alpha-induced global protein synthesis and bFGF-2 expression in VSMC.  相似文献   

16.
In the present study we focused in the PI3K/Akt pathway which plays a key role in neuronal survival. Here we show that inhibition of PI3K/Akt by means of LY294002 induces apoptosis via a caspase-dependent and calpain-independent pathway in cerebellar granule neurons (CGNs). This finding was confirmed using zVAD-fmk, a widely caspase inhibitor that prevents apoptosis. For this purpose, we compared two models of apoptosis in CGNs, namely inhibition of PI3K/Akt, and serum potassium deprivation (S/K deprivation). In contrast to the S/K deprivation model, caspase-3 was not activated when PI3K is inhibited. Likewise, CDK5 activation was not involved in this apoptotic process, because calpain activation is responsible for the formation of CDK5/p25 neurotoxic form. However, S/K deprivation activated calpain, as it is shown by α-spectrin breakdown, and favoured the formation of CDK5/p25. Moreover, although PI3K/Akt inhibition enhanced pRbser780 phosphorylation, no increase in the expression of cell-cycle proteins, namely: cyclin D, cyclin E, CDK2 or CDK4, was detected. Furthermore, BrdU incorporation assay did not shown any increase in DNA synthesis. Likewise, PI3K/Akt inhibition increased GSK3β activity and c-Jun phosphorylation, which implicates these two pathways in this apoptotic route. Although previous reports suggest that apoptosis induced in CGNs by LY294002 and S/K deprivation causes PI3K inhibition and increases GSK3β activity and c-Jun phosphorylation activation, our results demonstrate substantial differences between them and point to a key role of GSK3β in the apoptosis induced in CGNs in the two models tested.  相似文献   

17.
The role of the main intracellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the induction of autophagic response and cell death was investigated in SH-SY5Y human neuroblastoma cells exposed to the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The induction of autophagy in SH-SY5Y cells was demonstrated by acridine orange staining of intracellular acidic vesicles, the presence of autophagosome- and autophagolysosome-like vesicles confirmed by transmission electron microscopy, as well as by microtubule-associated protein 1 light-chain 3 (LC3) conversion and p62 degradation detected by immunoblotting. 6-OHDA induced phosphorylation of AMPK and its target Raptor, followed by the dephosphorylation of the major autophagy inhibitor mammalian target of rapamycin (mTOR) and its substrate p70S6 kinase (S6K). 6-OHDA treatment failed to suppress mTOR/S6K phosphorylation and to increase LC3 conversion, p62 degradation and cytoplasmatic acidification in neuroblastoma cells in which AMPK expression was downregulated by RNA interference. Transfection of SH-SY5Y cells with AMPK or LC3β shRNA, as well as treatment with pharmacological autophagy inhibitors suppressed, while mTOR inhibitor rapamycin potentiated 6-OHDA-induced oxidative stress and apoptotic cell death. 6-OHDA induced phosphorylation of p38 mitogen-activated protein (MAP) kinase in an AMPK-dependent manner, and pharmacological inhibition of p38 MAP kinase reduced neurotoxicity, but not AMPK activation and autophagy triggered by 6-OHDA. Finally, the antioxidant N-acetyl cysteine antagonized 6-OHDA-induced activation of AMPK, p38 and autophagy. These data suggest that oxidative stress-mediated AMPK/mTOR-dependent autophagy and AMPK/p38-dependent apoptosis could be valid therapeutic targets for neuroprotection.  相似文献   

18.
Patients with chronic heart failure (HF) frequently lose muscle mass and function during the course of the disease. A reduction in anabolic stimuli to the muscle has been put forth as a potential mechanism underlying these alterations. The present study examined the hypothesis that skeletal muscle tissue from HF patients would show reduced IGF-1 expression and phosphorylation of signaling molecules downstream of receptor activation. To isolate the unique effect of HF on these variables, we limited the confounding effects of muscle disuse and/or acute disease exacerbation by recruiting controls (n = 11) with similar physical activity levels as HF patients (n = 11) and by testing patients at least 6 mo following any bouts of disease exacerbation/hospitalization. IGF-1 expression in skeletal muscle was similar between patients and controls. Despite this, HF patients were characterized by reduced levels of phospho-Akt/Akt (S473; -43%; P < 0.05), whereas no differences were found in total Akt protein content or phospho- or total protein content of mammalian target of rapamycin (mTOR; S2448), glycogen synthase kinase-3β (GSK-3β; S9), eukaryotic translation initiation factor 4E binding protein-1 (eIF4E-BP; T37/46), p70 ribosomal S6 kinase (p70 S6K; T389), or eIF2Bε (S540). Reduced phospho-Akt/Akt levels and phospho-mTOR/mTOR were related to decreased skeletal muscle myosin protein content (r = 0.602; P < 0.02) and knee extensor isometric torque (r = 0.550; P < 0.05), respectively. Because patients and controls were similar for age, muscle mass, and physical activity, we ascribe the observed alterations in Akt phosphorylation and its relationship to myosin protein content to the unique effects of the HF syndrome.  相似文献   

19.
Mutations in the tumor suppressor genes TSC1 and TSC2, encoding hamartin and tuberin, respectively, cause the tumor syndrome tuberous sclerosis with similar phenotypes. Until now, over 50 proteins have been demonstrated to interact with hamartin and/or tuberin. Besides tuberin, the proteins DOCK7, ezrin/radixin/moesin, FIP200, IKKbeta, Melted, Merlin, NADE(p75NTR), NF-L, Plk1 and TBC7 have been found to interact with hamartin. Whereas Plk1 and TBC7 have been demonstrated not to bind to tuberin, for all the other hamartin-interacting proteins the question, whether they can also bind to tuberin, has not been studied. Tuberin interacts with 14-3-3 beta,epsilon,gamma,eta,sigma,tau,zeta, Akt, AMPK, CaM, CRB3/PATJ, cyclin A, cyclins D1, D2, D3, Dsh, ERalpha, Erk, FoxO1, HERC1, HPV16 E6, HSCP-70, HSP70-1, MK2, NEK1, p27KIP1, Pam, PC1, PP2Ac, Rabaptin-5, Rheb, RxRalpha/VDR and SMAD2/3. 14-3-3 beta,epsilon,gamma,eta,sigma,tau,zeta, Akt, Dsh, FoxO1, HERC1, p27KIP1 and PP2Ac are known not to bind to hamartin. For the other tuberin-interacting proteins this question remains elusive. The proteins axin, Cdk1, cyclin B1, GADD34, GSK3, mTOR and RSK1 have been found to co-immunoprecipitate with both, hamartin and tuberin. The kinases Cdk1 and IKKbeta phosphorylate hamartin, Erk, Akt, MK2, AMPK and RSK1 phosphorylate tuberin, and GSK3 phosphorylates both, hamartin and tuberin. This detailed summary of protein interactions allows new insights into their relevance for the wide variety of different functions of hamartin and tuberin.  相似文献   

20.
The respective roles of insulin and amino acids in regulation of skeletal muscle protein synthesis and degradation after feeding were examined in rats fasted for 17 h and refed over 1 h with either a 25 or a 0% amino acid/protein meal. In each nutritional condition, postprandial insulin secretion was either maintained (control groups: C(25) and C(0)) or blocked with diazoxide injections (diazoxide groups: DZ(25) and DZ(0)). Muscle protein metabolism was examined in vitro in epitrochlearis muscles. Only feeding the 25% amino acid/protein meal in the presence of increased plasma insulin concentration (C(25) group) stimulated protein synthesis and inhibited proteolysis in skeletal muscle compared with the postabsorptive state. The stimulation of protein synthesis was associated with increased phosphorylation of eukaryotic initiation factor (eIF)4E binding protein-1 (4E-BP1), reduced binding of eIF4E to 4E-BP1, and increased assembly of the active eIF4E. eIF4G complex. The p70 S6 kinase (p70(S6k)) was also hyperphosphorylated in response to the 25% amino acid/protein meal. Acute postprandial insulin deficiency induced by diazoxide injections totally abolished these effects. Feeding the 0% amino acid/protein meal with or without postprandial insulin deficiency did not stimulate muscle protein synthesis, reduce proteolysis, or regulate initiation factors and p70(S6k) compared with fasted rats. Taken together, our results suggest that both insulin and amino acids are required to stimulate protein synthesis, inhibit protein degradation, and regulate the interactions between eIF4E and 4E-BP1 or eIF4G in response to feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号