首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) can be divided into two branches: the “red-like type” of marine algae and the “green-like type” of cyanobacteria, green algae, and higher plants. We found that the “green-like type” rubisco from the thermophilic cyanobacterium Thermosynechococcus elongatus has an almost 2-fold higher specificity factor compared with rubiscos of mesophilic cyanobacteria, reaching the values of higher plants, and simultaneously revealing an improvement in enzyme thermostability. The difference in the activation energies at the transition stages between the oxygenase and carboxylase reactions for Thermosynechococcus elongatus rubisco is very close to that of Galdieria partita and significantly higher than that of spinach. This is the first characterization of a “green-like type” rubisco from thermophilic organism.  相似文献   

2.
3.
A putative photoreceptor gene, TepixJ, of a thermophilic cyanobacterium is homologous to SypixJ1 that mediates positive phototaxis in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. The putative chromophore-binding GAF domain of TePixJ protein was overexpressed as a fusion with a polyhistidine tag (His-TePixJ_GAF) in Synechocystis cells and isolated to homogeneity. The photoreversible conversion of His-TePixJ_GAF showed peaks at 531, 341 and 266 nm for the green light-absorbing form (Pg form), and peaks at 433 and 287 nm for the blue light-absorbing form (Pb form). At 77K, the Pg form fluoresced at 580 nm, while the Pb form did not emit any fluorescence. Mass spectrometry of the tryptic chromopeptide demonstrated that a phycocyanobilin isomer binds to the conserved cysteine at ring A via a thioether bond. It is established that TePixJ and SyPixJ1 are novel photoreceptors in cyanobacteria ('cyanobacteriochromes') that are similar, but distinct from the phytochromes and bacteriophytochromes.  相似文献   

4.
We improved genetic transformation of the thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1, by combining electroporation with a top agar method. Transformation was also improved when a disruptant of a putative type I restriction endonuclease (tll2230) was used as recipient cells. In particular, some constructs, with which wild type has never been transformed, were successfully integrated into the tll2230-disruptant. Single-crossover recombination was detected more frequently than the double-crossover recombination. In accordance with the presence of all the homologs of pil genes in Synechocystis sp. PCC 6803, we found that T. elongatus is naturally transformable with exogenous DNA.  相似文献   

5.
6.
The PsbQ-like protein, termed CyanoQ, found in the cyanobacterium Synechocystis sp. PCC 6803 is thought to bind to the lumenal surface of photosystem II (PSII), helping to shield the Mn4CaO5 oxygen-evolving cluster. CyanoQ is, however, absent from the crystal structures of PSII isolated from thermophilic cyanobacteria raising the possibility that the association of CyanoQ with PSII might not be a conserved feature. Here, we show that CyanoQ (encoded by tll2057) is indeed expressed in the thermophilic cyanobacterium Thermosynechococcus elongatus and provide evidence in support of its assignment as a lipoprotein. Using an immunochemical approach, we show that CyanoQ co-purifies with PSII and is actually present in highly pure PSII samples used to generate PSII crystals. The absence of CyanoQ in the final crystal structure is possibly due to detachment of CyanoQ during crystallisation or its presence in sub-stoichiometric amounts. In contrast, the PsbP homologue, CyanoP, is severely depleted in isolated PSII complexes. We have also determined the crystal structure of CyanoQ from T. elongatus to a resolution of 1.6 Å. It lacks bound metal ions and contains a four-helix up-down bundle similar to the ones found in Synechocystis CyanoQ and spinach PsbQ. However, the N-terminal region and extensive lysine patch that are thought to be important for binding of PsbQ to PSII are not conserved in T. elongatus CyanoQ.  相似文献   

7.
For functional characterization, we isolated the F1FO-ATP synthase of the thermophilic cyanobacterium Thermosynechococcus elongatus. Because of the high content of phycobilisomes, a combination of dye-ligand chromatography and anion exchange chromatography was necessary to yield highly pure ATP synthase. All nine single F1FO subunits were identified by mass spectrometry. Western blotting revealed the SDS stable oligomer of subunits c in T. elongatus. In contrast to the mass archived in the database (10,141 Da), MALDI-TOF-MS revealed a mass of the subunit c monomer of only 8238 Da. A notable feature of the ATP synthase was its ability to synthesize ATP in a wide temperature range and its stability against chaotropic reagents. After reconstitution of F1FO into liposomes, ATP synthesis energized by an applied electrochemical proton gradient demonstrated functional integrity. The highest ATP synthesis rate was determined at the natural growth temperature of 55 degrees C, but even at 95 degrees C ATP production occurred. In contrast to other prokaryotic and eukaryotic ATP synthases which can be disassembled with Coomassie dye into the membrane integral and the hydrophilic part, the F1FO-ATP synthase possessed a particular stability. Also with the chaotropic reagents sodium bromide and guanidine thiocyanate, significantly harsher conditions were required for disassembly of the thermophilic ATP synthase.  相似文献   

8.
The growth characteristics of Thermosynechococcus elongatus on elevated CO? were studied in a photobioreactor. Cultures were able to grow on up to 20% CO?. The maximum productivity and CO? fixation rates were 0.09 ± 0.01 and 0.17 ± 0.01 mg ml?1 day?1, respectively, for cultures grown on 20% CO?. Three major carbon pools--lipids, polyhydroxybutyrates (PHBs), and glycogen--were measured. These carbon stores accounted for 50% of the total biomass carbon in cultures grown on atmospheric CO? (no supplemental CO?), but only accounted for 30% of the total biomass carbon in cultures grown on 5-20% CO?. Lipid content was approximately 20% (w/w) under all experimental conditions, while PHB content reached 14.5% (w/w) in cultures grown on atmospheric CO? and decreased to approximately 2.0% (w/w) at 5-20% CO?. Glycogen levels did not vary significantly and remained about 1.4% (w/w) under all test conditions. The maximum amount of CO? sequestered over the course of the nine-day chemostat experiment was 1.15 g l?1 in cultures grown on 20% CO?.  相似文献   

9.
10.
Proteins derived from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1, which performs plant-type oxygenic photosynthesis, are suitable for biochemical, biophysical, and X-ray crystallographic studies. We developed an automated bioluminescence real-time monitoring system for the circadian clock in the thermophilic cyanobacterium T. elongatus BP-1 that uses a bacterial luciferase gene set (Xl luxAB) derived from Xenorhabdus luminescens as a bioluminescence reporter gene. A promoter region of the psbA1 gene of T. elongatus was fused to the Xl luxAB gene set and inserted into a specific targeting site in the genome of T. elongatus. The bioluminescence from the cells of the psbA1-reporting strain was measured by an automated monitoring apparatus with photomultiplier tubes. The strain exhibited the circadian rhythms of bioluminescence with a 25-h period length for at least 10 days in constant light and temperature. The rhythms were reset by light-dark cycle, and their period length was almost constant over a wide range of temperatures (30 to 60 degrees C). Theses results indicate that T. elongatus has the circadian clock that is widely temperature compensated.  相似文献   

11.
Phycobilisomes (PBSs) are huge, water-soluble light-harvesting complexes used by oxygenic photosynthetic organisms. The structures of some subunits of the PBSs, including allophycocyanin (APC) and phycocyanin (PC), have been solved by X-ray crystallography previously. However, there are few reports on the overall structures of PBS complexes in photosynthetic organisms. Here, we report the overall structure of the PBS complex isolated from the cyanobacterium Thermosynechococcus vulcanus, determined by negative-staining electron microscopy (EM). Intact PBS complexes were purified by trehalose density gradient centrifugation with a high-concentration phosphate buffer and then subjected to a gradient-fixation preparation using glutaraldehyde. The final map constructed by the single-particle analysis of EM images showed a hemidiscoidal structure of the PBS, consisting of APC cores and peripheral PC rods. The APC cores are composed of five cylinders: A1, A2, B, C1, and C2. Each of the cylinders is composed of three (A1 and A2), four (B), or two (C1 and C2) APC trimers. In addition, there are eight PC rods in the PBS: one bottom pair (Rb and Rb'), one top pair (Rt and Rt'), and two side pairs (Rs1/Rs1′ and Rs2/Rs2′). Comparison with the overall structures of PBSs from other organisms revealed structural characteristics of T. vulcanus PBS.  相似文献   

12.
13.
14.
15.
Cytochrome c(550) is one of the extrinsic Photosystem II subunits in cyanobacteria and red algae. To study the possible role of the heme of the cytochrome c(550) we constructed two mutants of Thermosynechococcus elongatus in which the residue His-92, the sixth ligand of the heme, was replaced by a Met or a Cys in order to modify the redox properties of the heme. The H92M and H92C mutations changed the midpoint redox potential of the heme in the isolated cytochrome by +125 mV and -30 mV, respectively, compared with the wild type. The binding-induced increase of the redox potential observed in the wild type and the H92C mutant was absent in the H92M mutant. Both modified cytochromes were more easily detachable from the Photosystem II compared with the wild type. The Photosystem II activity in cells was not modified by the mutations suggesting that the redox potential of the cytochrome c(550) is not important for Photosystem II activity under normal growth conditions. A mutant lacking the cytochrome c(550) was also constructed. It showed a lowered affinity for Cl(-) and Ca(2+) as reported earlier for the cytochrome c(550)-less Synechocystis 6803 mutant, but it showed a shorter lived S(2)Q(B)(-) state, rather than a stabilized S(2) state and rapid deactivation of the enzyme in the dark, which were characteristic of the Synechocystis mutant. It is suggested that the latter effects may be caused by loss (or weaker binding) of the other extrinsic proteins rather than a direct effect of the absence of the cytochrome c(550).  相似文献   

16.
Using a recently introduced electrophoresis system [Kashino et al. (2001) Electrophoresis 22: 1004], components of low-molecular-mass polypeptides were analyzed in detail in photosystem II (PSII) complexes isolated from a thermophilic cyanobacterium, Thermosynechococcus vulcanus (formerly, Synechococcus vulcanus). PsbE, the large subunit polypeptide of cytochrome b(559), showed an apparent molecular mass much lower than the expected one. The unusually large mobility could be attributed to the large intrinsic net electronic charge. All other Coomassie-stained polypeptides were identified by N-terminal sequencing. In addition to the well-known cyanobacterial PSII polypeptides, such as PsbE, F, H, I, L, M, U, V and X, the presence of PsbY, PsbZ and Psb27 was also confirmed in the isolated PSII complexes. Furthermore, the whole amino acid sequence was determined for the polypeptide which was known as PsbN. The whole amino acid sequence revealed that this polypeptide was identical to PsbTc which has been found in higher plants and green algae. These results strongly suggest that PsbN is not a member of the PSII complex. It is also shown that cyanobacteria have cytochrome b(559) in the high potential form as in higher plants.  相似文献   

17.
We identified an open reading frame from a database of the entire genome of Synechococcus elongatus, the product of which was very similar to pixJ1, which was proposed as photoreceptor gene for phototaxis in Synechocystis sp. PCC6803 [Yoshihara et al. (2000) Plant Cell Physiol. 41: 1299]. The mRNA of S. elongatus pixJ (SepixJ) was expressed in vivo as a part of the product of an operon. SePixJ was detected exclusively in the membrane fraction after cell fractionation. Immunogold labeling of SePixJ in ultra-thin sections indicated that it existed only in both ends of the rod-shaped cell; probably bound with the cytoplasmic membrane.  相似文献   

18.
PS II-H is a small hydrophobic protein that is universally present in the PS II core complex of cyanobacteria and plants. The role of PS II-H was studied by directed mutagenesis and biochemical analysis in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. The psbH disruptant could grow photoautotrophically; however, its growth was much slower than that of the wild type cell. Chromatography enabled the isolation of active oxygen-evolving PS II complexes from both the mutant and the wild type. The mutant yielded a relatively large amount of inactive PS II complex that lacked the following extrinsic proteins: the 33-kDa protein, the 12-kDa protein, and cytochrome c 550 . There were differences between the psbH disruptant and the wild type in terms of the oxygen evolution activities of the cells, thylakoids, and PS II complexes. At high concentrations of 2,6-DCBQ, the activity was much lower in the mutant than in the wild type. Gel filtration chromatography of the PS II complexes showed that both active and inactive PS II complexes isolated from the mutant were mostly in the monomeric form, while the active PS II complex from the wild type was in the dimeric form. The polypeptide composition of both active and inactive PS II complexes from the mutant showed the absence of another small polypeptide, PS II-X. These results suggest that the PS II-H protein is essential for stable assembly of native dimeric PS II complex containing PS II-X.  相似文献   

19.
Cytochrome c6 is a small, soluble electron carrier between the two membrane-bound complexes cytochrome b6f and photosystem I (PSI) in oxygenic photosynthesis. We determined the solution structure of cytochrome c6 from the thermophilic cyanobacterium Synechococcus elongatus by NMR spectroscopy and molecular dynamics calculations based on 1586 interresidual distance and 28 dihedral angle restraints. The overall fold exhibits four alpha-helices and a small antiparallel beta-sheet in the vicinity of Met58, one of the axial heme ligands. The flat hydrophobic area in this cytochrome c6 is conserved in other c6 cytochromes and even in plastocyanin of higher plants. This docking region includes the site of electron transfer to PSI and possibly to the cytochrome b6f complex. The binding of cytochrome c6 to PSI in green algae involves interaction of a negative patch with a positive domain of PSI. This positive domain has not been inserted at the evolutionary level of cyanobacteria, but the negatively charged surface region is already present in S. elongatus cytochrome c6 and may thus have been optimized during evolution to improve the interaction with the positively charged cytochrome f. As the structure of PSI is known in S.elongatus, the reported cytochrome c6 structure can provide a basis for mutagenesis studies to delineate the mechanism of electron transfer between both.  相似文献   

20.
The conversion of solar radiation to chemical energy by photosynthetic organisms provides the primary driving force for life on earth. Light energy is captured by a variety of pigments, usually bound to proteins, which vary with different types of organisms. We report here the 1.45 A resolution three-dimensional structure of one such pigment protein, C-phycocyanin, from Synechococcus elongatus. The structure is at the highest resolution achieved for any such phycobiliprotein. This level of resolution was made possible by implementing a novel crystallization method whereby nucleation is decoupled from subsequent growth, by incubating crystallizing drops for 7h under nucleation conditions and then transferring them to metastable conditions for growth. This is done without touching the crystallization drops throughout the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号