首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Intracellular trafficking of tRNA was long thought to be a one-way trip from the site of biogenesis in the nucleus to the translation machinery in the cytoplasm. This view has recently been challenged, however, by the discovery that tRNA can move retrograde from the cytoplasm back to the nucleus in Saccharomyces cerevisiae and rat hepatoma H4IIE cells during nutrient stress and in S. cerevisiae after intron-containing pre-tRNAs are spliced in the cytoplasm. Contrary to studies reported, we present data suggesting that nutrient stress does not cause retrograde transport of cytoplasmic tRNAs to the nucleus in rat hepatoma H4IIE cells, human HeLa and HEK293 cells, and the yeasts Kluyveromyces lactis and S. cerevisiae. However, the efficiency of nuclear re-export of retrograded spliced tRNA was severely affected in S. cerevisiae and two other Saccharomyces species deprived of nutrient. Collectively, the data suggest that nutrient stress does not cause nuclear import of cytoplasmic tRNA; instead, nutrient stress specifically regulates nuclear re-export of retrograded spliced tRNAs but not nuclear export of tRNAs made from intronless pre-tRNAs in Saccharomyces species. Furthermore, we provide evidence suggesting that Mtr10p and the Gsp1pGTP/Gsp1pGDP cycle are not involved in nuclear tRNA import in S. cerevisiae during nutrient stress.  相似文献   

3.
tRNAs in yeast and vertebrate cells move bidirectionally and reversibly between the nucleus and the cytoplasm. We investigated roles of members of the β-importin family in tRNA subcellular dynamics. Retrograde import of tRNA into the nucleus is dependent, directly or indirectly, upon Mtr10. tRNA nuclear export utilizes at least two members of the β-importin family. The β-importins involved in nuclear export have shared and exclusive functions. Los1 functions in both the tRNA primary export and the tRNA reexport processes. Msn5 is unable to export tRNAs in the primary round of export if the tRNAs are encoded by intron-containing genes, and for these tRNAs Msn5 functions primarily in their reexport to the cytoplasm. The data support a model in which tRNA retrograde import to the nucleus is a constitutive process; in contrast, reexport of the imported tRNAs back to the cytoplasm is regulated by the availability of nutrients to cells and by tRNA aminoacylation in the nucleus. Finally, we implicate Tef1, the yeast orthologue of translation elongation factor eEF1A, in the tRNA reexport process and show that its subcellular distribution between the nucleus and cytoplasm is dependent upon Mtr10 and Msn5.  相似文献   

4.
5.
The HIV/AIDS pandemic is a major global health threat and understanding the detailed molecular mechanisms of HIV replication is critical for the development of novel therapeutics. To replicate, HIV-1 must access the nucleus of infected cells and integrate into host chromosomes, however little is known about the events occurring post-nuclear entry but before integration. Here we show that the karyopherin Transportin 3 (Tnp3) promotes HIV-1 integration in different cell types. Furthermore Tnp3 binds the viral capsid proteins and tRNAs incorporated into viral particles. Interaction between Tnp3, capsid and tRNAs is stronger in the presence of RanGTP, consistent with the possibility that Tnp3 is an export factor for these substrates. In agreement with this interpretation, we found that Tnp3 exports from the nuclei viral tRNAs in a RanGTP-dependent way. Tnp3 also binds and exports from the nuclei some species of cellular tRNAs with a defective 3'CCA end. Depletion of Tnp3 results in a re-distribution of HIV-1 capsid proteins between nucleus and cytoplasm however HIV-1 bearing the N74D mutation in capsid, which is insensitive to Tnp3 depletion, does not show nucleocytoplasmic redistribution of capsid proteins. We propose that Tnp3 promotes HIV-1 infection by displacing any capsid and tRNA that remain bound to the pre-integration complex after nuclear entry to facilitate integration. The results also provide evidence for a novel tRNA nucleocytoplasmic trafficking pathway in human cells.  相似文献   

6.
In higher plants, one-third to one-half of the mitochondrial tRNAs are encoded in the nucleus and are imported into mitochondria. This process appears to be highly specific for some tRNAs, but the factors that interact with tRNAs before and/or during import, as well as the signals present on the tRNAs, still need to be identified. The rare experiments performed so far suggest that, besides the probable implication of aminoacyl-tRNA synthetases, at least one additional import factor and/or structural features shared by imported tRNAs must be involved in plant mitochondrial tRNA import. To look for determinants that direct tRNA import into higher plant mitochondria, we have transformed BY2 tobacco cells with Arabidopsis thaliana cytosolic tRNA(Val)(AAC) carrying various mutations. The nucleotide replacements introduced in this naturally imported tRNA correspond to the anticodon and/or D-domain of the non-imported cytosolic tRNA(Met-e). Unlike the wild-type tRNA(Val)(AAC), a mutant tRNA(Val) carrying a methionine CAU anticodon that switches the aminoacylation of this tRNA from valine to methionine is not present in the mitochondrial fraction. Furthermore, mutant tRNAs(Val) carrying the D-domain of the tRNA(Met-e), although still efficiently recognized by the valyl-tRNA synthetase, are not imported any more into mitochondria. These data demonstrate that in plants, besides identity elements required for the recognition by the cognate aminoacyl-tRNA synthetase, tRNA molecules contain other determinants that are essential for mitochondrial import selectivity. Indeed, this suggests that the tRNA import mechanism occurring in plant mitochondria may be different from what has been described so far in yeast or in protozoa.  相似文献   

7.
8.
9.
The karyophilic properties of the human immunodeficiency virus, type I (HIV-1) pre-integration complex (PIC) allow the virus to infect non-dividing cells. To better understand the mechanisms responsible for nuclear translocation of the PIC, we investigated nuclear import of HIV-1 integrase (IN), a PIC-associated viral enzyme involved in the integration of the viral genome in the host cell DNA. Accumulation of HIV-1 IN into nuclei of digitonin-permeabilized cells does not result from passive diffusion but rather from an active transport that occurs through the nuclear pore complexes. HIV-1 IN is imported by a saturable mechanism, implying that a limiting cellular factor is responsible for this process. Although IN has been previously proposed to contain classical basic nuclear localization signals, we found that nuclear accumulation of IN does not involve karyopherins alpha, beta1, and beta2-mediated pathways. Neither the non-hydrolyzable GTP analog, guanosine 5'-O-(thiotriphosphate), nor the GTP hydrolysis-deficient Ran mutant, RanQ69L, significantly affects nuclear import of IN, which depends instead on ATP hydrolysis. Therefore these results support the idea that IN import is not mediated by members of the karyopherin beta family. More generally, in vitro nuclear import of IN does not require addition of cytosolic factors, suggesting that cellular factor(s) involved in this active but atypical pathway process probably remain associated with the nuclear compartment or the nuclear pore complexes from permeabilized cells.  相似文献   

10.
11.
The mitochondrial genome of Trypanosoma brucei does not appear to encode any tRNA genes. Isolated organellar tRNAs hybridize to nuclear DNA, suggesting that they are synthesized in the nucleus and subsequently imported into the mitochondrion. Most imported tRNAs have cytosolic counterparts, showing identical mobility on two-dimensional polyacrylamide gels. We have compared three nuclear-encoded mitochondrial tRNAs (tRNA(Lys), tRNA(Leu), tRNA(Tyr)) with their cytosolic isoforms by direct enzymatic sequence analysis. Our findings indicate that the primary sequences of the mitochondrial and the corresponding cytosolic tRNAs are identical. However, we have identified a mitochondrion-specific nucleotide modification of each tRNA which is localized to a conserved cytidine residue at the penultimate position 5' of the anticodon. The modification present in mature mitochondrial tRNA(Tyr) was not found in a mutant tRNA(Tyr) defective in splicing in either cytosolic or mitochondrial fractions. The mutant tRNA(Tyr) has been expressed in transformed cells and its import into mitochondria has been demonstrated, suggesting that the modified cytidine residue is not required for import and therefore may be involved in adapting imported tRNAs to specific requirements of the mitochondrial translation machinery.  相似文献   

12.
13.
Replication of human immunodeficiency virus type 1 (HIV-1) in non-dividing cells critically depends on import of the viral pre-integration complex into the nucleus. Genetic evidence suggests that viral protein R (Vpr) and matrix antigen (MA) are directly involved in the import process. An in vitro assay that reconstitutes nuclear import of HIV-1 pre-integration complexes in digitonin-permeabilized cells was used to demonstrate that Vpr is the key regulator of the viral nuclear import process. Mutant HIV-1 pre-integration complexes that lack Vpr failed to be imported in vitro, whereas mutants that lack a functional MA nuclear localization sequence (NLS) were only partially defective. Strikingly, the import defect of the Vpr- mutant was rescued when recombinant Vpr was re-added. In addition, import of Vpr- virus was rescued by adding the cytosol of HeLa cells, where HIV-1 replication had been shown to be Vpr-independent. In a solution binding assay, Vpr associated with karyopherin alpha, a cellular receptor for NLSs. This association increased the affinity of karyopherin alpha for basic-type NLSs, including that of MA, thus explaining the positive effect of Vpr on nuclear import of the HIV-1 pre-integration complex and BSA-NLS conjugates. These results identify the biochemical mechanism of Vpr function in transport of the viral pre-integration complex to, and across, the nuclear membrane.  相似文献   

14.
15.
Replication of HIV-1 in non-dividing and slowly proliferating cell populations depends on active import of the viral pre-integration complex (PIC) into the cell nucleus. While it is commonly accepted that this process is mediated by an interaction between the HIV-1 PIC and the cellular nuclear import machinery, controversial results have been reported concerning the mechanisms of this interaction. Here, we demonstrate that a recently identified nuclear localization signal within the HIV-1 matrix protein (MA), MA NLS-2, together with previously described MA NLS-1, mediates nuclear import of the HIV-1 PIC. Inactivation of both MA NLSs precluded nuclear translocation of MA and rendered the virus defective in nuclear import and replication in non-dividing macrophage cultures, even when functional Vpr and integrase (IN), two more viral proteins implicated in HIV-1 nuclear import, were present. Taken together, these results indicate that Vpr does not function as an independent nuclear import factor and demonstrate that HIV-1 MA, by virtue of its two nuclear localization signals, regulates HIV-1 nuclear import.  相似文献   

16.
The human immunodeficiency virus 1 (HIV-1) synthesizes its genomic DNA in cytoplasm as soon as it enters the cell. The newly synthesized DNA remains associated with viral/cellular proteins as a high molecular weight pre-integration complex (PIC), which precludes passive diffusion across intact nuclear membrane. However, HIV-1 successfully overcomes nuclear membrane barrier by actively delivering its DNA into nucleus with the help of host nuclear import machinery. Such ability allows HIV-1 to productively infect non-dividing cells as well as dividing cells at interphase. Further, HIV-1 nuclear import is also found important for the proper integration of viral DNA. Thus, nuclear import plays a crucial role in establishment of infection and disease progression. While several viral components, including matrix, viral protein R, integrase, capsid, and central DNA flap are implicated in HIV-1 nuclear import, their molecular mechanism remains poorly understood. In this review, we will elaborate the role of individual viral factors and some of current insights on their molecular mechanism(s) associated with HIV-1 nuclear import. In addition, we will discuss the importance of nuclear import for subsequent step of viral DNA integration. Hereby we aim to further our understanding on molecular mechanism of HIV-1 nuclear import and its potential usefulness for anti-HIV-1 strategies.  相似文献   

17.
Feline immunodeficiency virus (FIV), like other members of the lentivirus subfamily, such as human immunodeficiency virus type 1 (HIV-1), can infect nondividing and terminally differentiated cells. The transport of the preintegration complex into the nucleus is cell cycle-independent, but the mechanism is not well understood. Integrase is a key component of the complex and has been suggested to play a role in nuclear import during HIV-1 replication. To determine its karyophilic property, FIV integrase fused with glutathione S-transferase and enhanced green fluorescent protein was expressed in various feline and human cells and the subcellular localization was visualized by fluorescence microscopy. Wild-type FIV integrase was karyophilic in all cell lines tested and capable of targeting the fusion protein to the nuclei of transfected cells. Analysis of deletion and point mutation variants of FIV integrase failed to reveal any canonical nuclear localization signal, and the karyophilic determinant was mapped to the highly conserved N-terminal zinc-binding HHCC motif. A region near the C-terminal domain enriched with basic amino acid residues also affected the nuclear import of integrase. However, the role of this region is only modulatory in comparison to that of the zinc-binding domain. The N-terminal zinc-binding domain does not bind DNA and instead is essential in integrase multimerization. We therefore postulate that the karyophilic property of FIV integrase requires subunit multimerization promoted by the HHCC motif. Alternatively, the HHCC motif may directly promote interaction between FIV integrase and cellular proteins involved in nuclear import.  相似文献   

18.
R Hauser  A Schneider 《The EMBO journal》1995,14(17):4212-4220
The mitochondrial genome of Trypanosoma brucei does not encode any identifiable tRNAs. Instead, mitochondrial tRNAs are synthesized in the nucleus and subsequently imported into mitochondria. In order to analyse the signals which target the tRNAs into the mitochondria, an in vivo import system has been developed: tRNA variants were expressed episomally and their import into mitochondria assessed by purification and nuclease treatment of the mitochondrial fraction. Three tRNA genes were tested in this system: (i) a mutated version of the trypanosomal tRNA(Tyr); (ii) a cytosolic tRNA(His) of yeast; and (iii) a human cytosolic tRNA(Lys). The tRNAs were expressed in their own genomic context, or containing various lengths of the 5'-flanking sequence of the trypanosomal tRNA(Tyr) gene. In all cases efficient import of each of the tRNAs was observed. We independently confirmed the mitochondrial import of the yeast tRNA(His), since in organello [alpha-32P]ATP-labelling of the 3'-end of the tRNA was inhibited by carboxyatractyloside, a highly specific inhibitor of the mitochondrial adenine nucleotide translocator. Import of heterologous tRNAs in their own genomic contexts supports the conclusion that no specific targeting signals are necessary to import tRNAs into mitochondria of T. brucei, but rather that the tRNA structure itself is sufficient to specify import.  相似文献   

19.
The cytoplasmic tRNA(Lys)(CUU) (tRNA(1Lys)) is the single yeast tRNA species to be traffiked from the cytoplasm into the mitochondrial compartment of the cell. To study mechanisms of this targetting we worked out two test systems. The in vivo system based on the electroporation of intact yeast cells was used to introduce labelled tRNAs into the cytoplasm. All tRNA species tested were effectively introduced into the cytoplasm, but only the cytoplasmic tRNA(1Lys) was found in the mitochondrial compartment within 1-2 hours after the electroporation procedure. The in vitro system permits specific transfer of the tRNA(1Lys) into isolated mitochondria. Contrary to the known systems for protein transport into isolated mitochondria, mitochondrial import of tRNA(1Lys) in vitro requires the presence of soluble cellular proteins in the reaction mixture. The translocation proved to be ATP-dependent and to require the presence of an ATP-generation system in the reaction. Preincubation of the tRNA with the total cellular extract of the cell markedly increases the rate of the translocation. Two protein fractions are necessary to direct the import in vitro. The first one has high heparin-binding affinity, while the other protein fraction is not retained by heparin-Sepharose.  相似文献   

20.
Infections by human and simian immunodeficiency viruses (HIV and SIV) are independent of host cell division since the preintegration complex (PIC), containing the viral DNA, is able to undergo active nuclear import after viral entry. In order to clarify the mechanisms responsible for nuclear import of the PIC, we have analyzed the subcellular distribution and the karyophilic properties of its viral components, matrix protein (MA), integrase (IN), Vpr, and Vpx. Although MA has been reported to contain a nuclear localization signal, the MA/GFP fusions are excluded from the nucleus and associated with cellular membranes. In contrast, both HIV-1 and SIV IN and Vpr localize in the nucleus of transfected cells. Interestingly, only Vpx from SIVsm virus accumulate in the nucleus while SIVsm Vpr is uniformly distributed throughout nucleus and cytoplasm. Coexpression of MA, Vpr, and IN does not induce any change in their respective intracellular localizations. Finally, we confirm the karyophilic properties of HIV-1 IN and Vpr using an in vitro nuclear import assay. These results indicate that the viral proteins IN and Vpr, which are strongly associated with the viral DNA within PIC, may participate in the nuclear import of the HIV PIC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号