首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
During development, the organizer provides instructive signals to surrounding cells as well as contributing cells to axial structures. To dissect organizer function at different developmental stages, conditional approaches such as the Cre/loxP system for conditional mutagenesis are particularly useful. Here we describe two new Cre transgenic mouse lines, Foxa2 NFP-Cre and Nodal PNC-Cre, with activity in two organizer domains, the posterior notochord (PNC) and notochord. These lines were made using defined regulatory elements from the Foxa2 and Nodal genes that direct Cre expression in overlapping domains of the PNC and notochord. Our detailed analysis of the timing and location of Foxa2 NFP-Cre and Nodal PNC-Cre activity indicates that these lines are appropriate for conditional mutagenesis of genes expressed from early somite stages onward.  相似文献   

2.
3.
The node and the notochord are important embryonic signaling centers that control embryonic pattern formation. Notochord progenitor cells present in the node and later in the posterior end of the notochord move anteriorly to generate the notochord. To understand the dynamics of cell movement during notochord development and the molecular mechanisms controlling this event, analyses of cell movements using time‐lapse imaging and conditional manipulation of gene activities are required. To achieve this goal, we generated two knock‐in mouse lines that simultaneously express nuclear enhanced green fluorescent protein (EGFP) and tamoxifen‐inducible Cre, CreERT2, from two notochord gene loci, Foxa2 and T (Brachury). In Foxa2nEGFP‐CreERT2/+ and TnEGFP‐CreERT2/+ embryos, nuclei of the Foxa2 or T‐expressing cells, which include the node, notochord, and endoderm (Foxa2) or wide range of posterior mesoderm (T), were labeled with EGFP at intensities that can be used for live imaging. Cre activity was also induced in cells expressing Foxa2 and T 1 day after tamoxifen administration. These mice are expected to be useful tools for analyzing the mechanisms of notochord development. genesis 51:210–218, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
In caudal regions of the CNS, glycine constitutes the major inhibitory neurotransmitter. Here, we describe a mouse line that expresses Cre recombinase under the control of a BAC transgenic glycine transporter 2 (GlyT2) promoter fragment. Mating of GlyT2‐Cre mice with the Cre reporter mouse lines Rosa26/LacZ and Rosa26/YFP and analysis of double transgenic offsprings revealed strong transgene activity in caudal regions of the central nervous system, i.e., brain stem and spinal cord. Some additional Cre expression was observed in cortical and cerebellar regions. In brain stem and spinal cord, Cre expressing cells were identified as glycinergic interneurons by staining with GlyT2‐ and glycine‐immunoreactive antibodies; here, >80% of the glycine‐immunoreactive cells expressed the Cre reporter protein. These data indicate that GlyT2‐Cre mice are a useful tool for the genetic manipulation of glycinergic interneurons. genesis 48:437–445, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
Sall1 is expressed in the metanephric mesenchyme in the developing kidney, and mice deficient in Sall1 show kidney agenesis or dysgenesis. Sall1 is also expressed elsewhere, including in the limb buds, anus, heart, and central nervous system. Dominant‐negative mutations of Sall1 in mice and humans lead to developmental defects in these organs. Here, we generated a mouse line expressing tamoxifen‐inducible Cre recombinase (CreERT2) under the control of the endogenous Sall1 promoter. Upon tamoxifen treatment, these mice showed genomic recombination in the tissues where endogenous Sall1 is expressed. When CreERT2 mice were crossed with the floxed Sall1 allele, tamoxifen administration during gestation led to a significant decrease in Sall1 expression and small kidneys at birth, suggesting that Sall1 functions were disrupted. Furthermore, Sall1 expression in the kidney was significantly reduced by neonatal tamoxifen treatment. The Sall1CreERT2 mouse is a valuable tool for in vivo time‐dependent and region‐specific knockout and overexpression studies. genesis 48:207–212, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
We developed a novel strategy based on in vitro DNA transposition of phage Mu to construct vectors for "knock-in" of the gene encoding Cre recombinase into endogenous loci in embryonic stem cells. This strategy was used to introduce Cre into the mouse Meox1 locus, which was expected to drive Cre expression in the presomitic and somitic mesoderm. In embryos heterozygous for both Meox1(Cre) and R26R or Z/AP reporter alleles, specific and efficient recombination of the reporter alleles was detected in the maturing somites and their derivatives, including developing vertebrae, skeletal muscle, back dermis, as well as endothelium of the blood vessels invading the spinal cord and developing limbs. In contrast to the somitic mesoderm, Cre activity was not observed in the cranial paraxial mesoderm. Thus, the Meox1(Cre) allele allows detailed fate-mapping of Meox1-expressing tissues, including derivatives of the somitic mesoderm. We used it to demonstrate dynamic changes in the composition of the mesenchyme surrounding the developing inner ear. Meox1(Cre) may also be used for tissue-specific mutagenesis in the somitic mesoderm and its derivatives.  相似文献   

8.
9.
Several genetically modified mouse models have been generated in order to drive expression of the Cre recombinase in the neuroectoderm. However, none of them specifically targets the posterior neural plate during neurulation. To fill this gap, we have generated a new transgenic mouse line in which Cre expression is controlled by a neural specific enhancer (NSE) from the Caudal‐related homeobox 2 (Cdx2) locus. Analyses of Cre activity via breeding with R26R‐YFP reporter mice have indicated that the Cdx2NSE‐Cre mouse line allows for recombination of LoxP sites in most cells of the posterior neural plate as soon as from the head fold stage. Detailed examination of double‐transgenic embryos has revealed that this novel Cre‐driver line allows targeting the entire posterior neural tube with an anterior limit in the caudal hindbrain. Of note, the Cdx2NSE regulatory sequences direct Cre expression along the whole dorso‐ventral axis (including pre‐migratory neural crest cells) and, accordingly, YFP fluorescence has been also observed in multiple non‐cranial neural crest derivatives of double‐transgenic embryos. Therefore, we believe that the Cdx2NSE‐Cre mouse line represents an important novel genetic tool for the study of early events occurring in the caudal neuroectoderm during the formation of both the central and the peripheral nervous systems. genesis 51:777–784. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
11.
Mammalian palate development is a multistep process, involving initial bilateral downward outgrowth of the palatal shelves from the oral side of the maxillary processes, followed by stage-specific palatal shelf elevation to the horizontal position above the developing tongue and subsequent fusion of the bilateral palatal shelves at the midline to form the intact roof of the oral cavity. While mutations in many genes have been associated with cleft palate pathogenesis, the molecular mechanisms regulating palatal shelf growth, patterning, and elevation are not well understood. Genetic studies of the molecular mechanisms controlling palate development in mutant mouse models are often complicated by early embryonic lethality or gross craniofacial malformation. We report here the development of a mouse strain for tissue-specific analysis of gene function in palate development. We inserted an IresCre bicistronic expression cassette into the 3' untranslated region of the mouse Osr2 gene through gene targeting. We show, upon crossing to the R26R reporter mice, that Cre expression from the Osr2(IresCre) knockin allele activated beta-galactosidase expression specifically throughout the developing palatal mesenchyme from the onset of palatal shelf outgrowth. In addition, the Osr2(IresCre) mice display exclusive Cre-mediated recombination in the glomeruli tissues derived from the metanephric mesenchyme and complete absence of Cre activity in other epithelial and mesenchymal tissues in the developing metanephric kidney. These data indicate that the Osr2(IresCre) knockin mice provide a unique tool for tissue-specific studies of the molecular mechanisms regulating palate and kidney development.  相似文献   

12.
Hand1 regulates development of numerous tissues within the embryo, extraembryonic mesoderm, and trophectoderm. Systemic loss of Hand1 results in early embryonic lethality but the cause has remained unknown. To determine if Hand1 expression in extraembryonic mesoderm is essential for embryonic survival, Hand1 was conditionally deleted using the HoxB6‐Cre mouse line that expresses Cre in extraembryonic and lateral mesoderm. Deletion of Hand1 using HoxB6‐Cre resulted in embryonic lethality identical to systemic knockout. To determine if lethality is due to Hand1 function in extraembryonic mesoderm or lateral mesoderm, we generated a Tlx2‐Cre mouse line expressing Cre in lateral mesoderm but not extraembryonic tissues. Deletion of Hand1 using the Tlx2‐Cre line results in embryonic survival with embryos exhibiting herniated gut and thin enteric smooth muscle. Our results show that Hand1 regulates development of lateral mesoderm derivatives and its loss in extraembryonic mesoderm is the primary cause of lethality in Hand1‐null embryos. genesis 48:479–484, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
To establish the genetic tools for conditional gene deletion in mouse retinal progenitors, we generated a Dkk3-Cre transgenic mouse line using bacterial artificial chromosome (BAC) transgenesis. Cre recombination efficiency in vivo was assayed by crossing this transgenic line, termed BAC-Dkk3-Cre, with the CAG-CAT-Z reporter line. This BAC-Dkk3-Cre line showed Cre recombinase activity in most retinal progenitors. Cre activity was detectable from embryonic day 10.5 (E10.5) and generally restricted to the retina during embryogenesis. To verify that BAC-Dkk3-Cre mice successfully circumvented lethality, we generated Otx2flox/flox/BAC-Dkk3-Cre+ mice as Otx2 conditional knockout mice. The Otx2flox/flox/BAC-Dkk3-Cre+ mice were viable, and their retina showed loss of mature cell-type markers of photoreceptor cells, bipolar cells, and horizontal cells, in contrast, amacrine-like cells noticeably increased. Thus, the BAC-Dkk3-Cre transgenic mouse line provides a powerful tool for generating conditional knockout mouse lines for studying loss of gene functions in the developing retina.  相似文献   

14.
15.
Abstract The mechanisms controlling endodermal development during stem cell differentiation have been only partly elucidated, although previous studies have suggested the participation of fibroblast growth factor (FGF) and activin A in these processes. Shb is a Src homology 2 (SH2) domain-containing adapter protein that has been implicated in FGF receptor 1 (FGFR1) signaling. To study the putative crosstalk between activin A and Shb-dependent FGF signaling in the differentiation of endoderm from embryonic stem (ES) cells, embryoid bodies (EBs) derived from mouse ES cells overexpressing wild-type Shb or Shb with a mutated SH2 domain (R522K-Shb) were cultured in the presence of activin A. We show that expression of R522K-Shb results in up-regulation of FGFR1 and FGF2 in EBs. Addition of activin A to the cultures enhances the expression of endodermal genes primarily in EBs expressing mutant Shb. Inhibition of FGF signaling by the addition of the FGFR1 inhibitor SU5402 completely counteracts the synergistic effects of R522K-Shb and activin A. In conclusion, the present results suggest that expression of R522K-Shb enhances certain signaling pathways downstream of FGF and that an interplay between FGF and activin A participates in ES cell differentiation to endoderm.  相似文献   

16.
17.
18.
摘要 目的:探讨非小细胞肺癌(NSCLC)组织驱动蛋白超家族成员2A(KIF2A)、驱动蛋白超家族成员2C(KIF2C)、驱动蛋白超家族成员20A(KIF20A)信使核糖核酸(mRNA)表达与临床病理特征和预后的关系。方法:选择2016年9月至2019年9月天津医科大学总医院手术切除的NSCLC患者106例,取其癌组织及其对应的癌旁组织,应用荧光定量聚合酶链式反应(RT-qPCR)检测组织中KIF2A、KIF2C、KIF20A mRNA表达,分析其与临床病理特征的关系。应用 Pearson相关性分析NSCLC组织中KIF2A、KIF2C、KIF20A mRNA表达间的关系。随访3年,应用Kaplan-Meier生存曲线分析KIF2A、KIF2C、KIF20A mRNA表达与患者预后关系。结果:NSCLC癌组织中KIF2A、KIF2C、KIF20A mRNA表达水平显著高于癌旁组织(P<0.05)。低分化、淋巴结转移、临床分期Ⅲ A 期NSCLC癌组织中KIF2A、KIF2C、KIF20A mRNA表达水平显著高于中高分化、无淋巴结转移及临床分期I、II期NSCLC癌组织(P<0.05)。Pearson相关分析显示,NSCLC癌组织中KIF2A mRNA表达与KIF2CmRNA、KIF20A mRNA表达呈正相关,KIF2C mRNA表达与KIF20A mRNA表达呈正相关(P<0.05)。Kaplan-Meier法分析显示KIF2A mRNA低表达组、KIF2C mRNA低表达组、KIF20A mRNA低表达组3年生存率分别为(84.78%,86.27%,81.48%)显著高于KIF2A mRNA高表达组、KIF2C mRNA高表达组、KIF20A mRNA高表达组(59.62%,55.32%,59.09%)(P<0.05)。结论:KIF2A、KIF2C、KIF20A mRNA在NSCLC组织中存在高表达,且与低分化、淋巴结转移、临床分期及预后有关。  相似文献   

19.

Background

MicroRNA is a type of non-coding small RNA involved in regulating genes and signaling pathways through incomplete complementation with target genes. Recent research supports key roles of miRNA in the formation and development of human glioma.

Methods

The relative quantity of miR-34a was initially determined in human glioma A172 cells and glioma tissues. Next, we analyzed the impact of miR-34a on A172 cell viability with the MTT assay. The effects of miR-34a overexpression on apoptosis were confirmed with flow cytometry and Hoechst staining experiments. We further defined the target genes of miR-34a using immunofluorescence and Western blot.

Results

MiR-34a expression was significantly reduced in human glioma A172 cells and glioma tissue, compared with normal glial cells and tissue samples. Our MTT data suggest that up-regulation of miR-34a inhibits cell viability while suppression of miR-34a enhances cell viability. Flow cytometry and Hoechst staining results revealed increased rates of apoptosis in A172 human glioma cells overexpressing miR-34a. Using immunofluorescence and Western blot analyses, we identified NOX2 as a target of miR-34a in A172 cells.

Conclusion

MiR-34a serves as a tumor suppressor in human glioma mainly by decreasing NOX2 expression.  相似文献   

20.
The long‐standing traditional method of delivering embryonic stem (ES) cells adjacent to the inner cell mass (ICM) of blastocysts to generate chimeras improved with the advent of laser‐ or Piezo assisted 8‐cell embryo microinjection. Building on this technology but omitting either the laser or the Piezo to penetrate the zona pellucida and making use of earlier embryonic stages (2‐cell and 4‐cell), we were able to significantly speed up and economize our ES cell microinjection and chimera production throughput. We demonstrate here that embryonic (ES) and induced pluripotent stem (iPS) cells can stay fully pluripotent when delivered into 2‐cell‐ and 4‐cell‐stage embryos, long before they would naturally be incorporated into the ICM of a blastocyst (E3.5) and give rise to high percentage and germline transmitting chimeras. genesis 48:394–399, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号