首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aggregation behavior of peptides Ac‐VQIVYK‐amide (AcPHF6) and Ac‐QIVYK‐amide (AcPHF5) from the amyloidogenic protein tau was examined by atomic force microscopy (AFM) and fluorescence microscopy. Although AcPHF5 did not show enhancement of thioflavin T (ThT) fluorescence in aqueous buffer, distinct aggregates were discernible when peptide was dissolved in organic solvents such as methanol (MeOH), trifluoroethanol (TFE), and hexafluoroisopropanol (HFIP) dried on mica and examined by AFM. Self‐association was evident even though the peptide did not have the propensity to form secondary structures in the organic solvents. In dried films, the peptide adopts predominantly β‐conformation which results in the formation of distinct aggregates. ThT fluorescence spectra and fluorescence images indicate the formation of fibrils when AcPHF6 solutions in organic solvents were diluted into buffer. AcPHF6 had the ability to organize into fibrillar structures when AFM samples were prepared from peptide dissolved in MeOH, TFE, HFIP, and also when diluted into buffer. AcPHF6 showed propensity for β‐structure in aqueous buffer. In MeOH and TFE, AcPHF6 showed helical and β‐structure. Morphology of the fibrils was dependent on peptide conformation in the organic solvents. The structures observed for AcPHF6 are formed rapidly and long incubation periods in the solvents are not necessary. The structures with varying morphologies observed for AcPHF5 and AcPHF6 appear to be mediated by surfaces such as mica and the organic solvents used for dissolution of the peptides. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Increasing numbers of proteins have been found to aggregate into insoluble fibers, collectively referred to as amyloid fibrils. To address the conformational stability of amyloid fibrils, we studied the effects of dimethylsulfoxide (DMSO), 2,2,2-trifluoroethanol (TFE), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) on beta(2)-microglobulin amyloid fibrils by circular dichroism, thioflavin T fluorescence, light scattering, and electron microscopy. When measured by circular dichroism and thioflavin T fluorescence, HFIP, and TFE dissolved the fibrils, producing predominantly helical conformations. However, these alcohols did not dissolve the amyloid fibrils completely as monitored by light scattering and electron microscopy. On the other hand, DMSO completely dissolved the amyloid fibrils although a high concentration [i.e., 80% (v/v)] was required. These results are consistent with the important role of hydrogen bonds in stabilizing amyloid fibrils.  相似文献   

3.
Although the formation of an alpha-helix or partial unfolding of proteins has been suggested to be important for amyloid fibrils to form in alcohols, the exact mechanism involved remains elusive. To obtain further insight into the development of amyloid fibrils, we used a 22-residue peptide, K3, corresponding to Ser20 to Lys41 of intact beta2-microglobulin. Although K3 formed an alpha-helix at high concentrations of 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) in 10 mM HCl (pH approximately 2), the helical content was not high, indicating a low preference to do so. The partly alpha-helical conformation was converted with time into a highly ordered beta-sheet with a fibrillar morphology as revealed by atomic force microscopy. Importantly, the TFE and HFIP-induced fibrillation exhibited a concentration dependence with a maximum at approximately 20 and approximately 10% (v/v), respectively, slightly below the concentrations at which these alcohols form dynamic clusters. Focusing on the similarity of the effects of alcohol on proteins with those of sodium dodecyl sulfate (SDS), we examined the effects of SDS on K3. SDS also induced fibrils to form with a maximum at approximately 4 mM, slightly below the critical micelle concentration. These results indicate that, with an increase in the concentration of hydrophobic cosolvent (TFE, HFIP, or SDS), a delicate balance of decreasing hydrophobic interactions and increasing polar interactions (i.e. H-bonds) in and between peptides leads to the formation of ordered fibrils with a bell-shaped concentration dependence.  相似文献   

4.
Fluorinated alcohols such as hexafluoroisopropanol (HFIP) and trifluoroethanol (TFE) have the ability to promote α-helix and β-hairpin structure in proteins and peptides. HFIP has been used extensively to dissolve various amyloidogenic proteins and peptides including Aβ, in order to ensure their monomeric status. In this paper, we have investigated the self-assembly of Aβ40, Aβ42, and Aβ43 in aqueous mixtures of fluorinated alcohols from freshly dissolved stock solutions in HFIP. We have observed that formation of fibrillar and non-fibrillar structures are dependent on the solvent composition. Peptides form fibrils with ease when reconstituted in deionized water from freshly dissolved HFIP stocks. In aqueous mixtures of fluorinated alcohols, either predominant fibrillar structures or clustered aggregates were observed. Aqueous mixtures of 20% HFIP are more favourable for Aβ fibril formation as compared to 20% TFE. When Aβ40, Aβ42, and Aβ43 stocks in HFIP are diluted in 50% aqueous mixtures in phosphate buffer or deionized water followed by slow evaporation of HFIP, Aβ peptides form fibrils in phosphate buffer and deionized water. The clustered structures could be off-pathway aggregates. Aβ40, Aβ42, and Aβ43 showed significant α-helical content in freshly dissolved HFIP stocks. The α-helical conformational intermediate in Aβ40, Aβ42, and Aβ43 could favour the formation of both fibrillar and non-fibrillar aggregates depending on solvent conditions and rate of α-helical to β-sheet transition.  相似文献   

5.
Beta(2)-microglobulin (beta(2)m) is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. Although full-length beta(2)m readily forms amyloid fibrils in vitro by seed-dependent extension with a maximum at pH 2.5, fibril formation under physiological conditions as detected in patients has been difficult to reproduce. A 22-residue K3 peptide of beta(2)m, Ser(20)-Lys(41), obtained by digestion with Acromobacter protease I, forms amyloid fibrils without seeding. To obtain further insight into the mechanism of fibril formation, we studied the pH dependence of fibril formation of the K3 peptide and its morphology using a ThT fluorescence assay and electron microscopy, respectively. K3 peptide formed amyloid fibrils over a wide range of pH values with an optimum around pH 7 and contrasted with the pH profile of the seed-dependent extension reaction of full-length beta(2)m. This suggests that once the rigid native-fold of beta(2)m is unfolded and additional factors triggering the nucleation process are provided, full-length beta(2)m discloses an intrinsic potential to form amyloid fibrils at neutral pH. The fibril formation was strongly promoted by dimerization of K3 through Cys(25). The morphology of the fibrils varied depending on the fibril formation conditions and the presence or absence of a disulfide bond. Various fibrils had the potential to seed fibril formation of full-length beta(2)m accompanied with a characteristic lag phase, suggesting that the internal structures are similar.  相似文献   

6.
The Aβ(16–22) sequence KLVFFAE spans the hydrophobic core of the Aβ peptide and plays an important role in its self-assembly. Apart from forming amyloid fibrils, Aβ(16–22) can self-associate into highly ordered nanotubes and ribbon-like structures depending on the composition of solvent used for dissolution. The Aβ(16–22) sequence which has FF at the 19th and 20th positions would be a good model to investigate peptide self-assembly in the context of aromatic interactions. In this study, self-assembly of Aβ(16–22) and its aromatic analogs obtained by replacement of F19, F20 or both by Y or W was examined after dissolution in fluorinated alcohols and their aqueous mixtures in solvent cluster forming conditions. The results indicate that the presence of aromatic residues Y and W and their position in the sequence plays an important role in self-assembly. We observe the formation of amyloid fibrils and other self-assembled structures such as spheres, rings and beads. Our results indicate that 20% HFIP is more favourable for amyloid fibril formation as compared to 20% TFE, when F is replaced with Y or W. The dissolution of peptides in DMSO followed by evaporation of solvent and dissolution in water appears to greatly influence peptide conformation, morphology and cross-β content of self-assembled structures. Our study shows that positioning of aromatic residues F, Y and W have an important role in directing self-assembly of the peptides.  相似文献   

7.
Beta2-Microglobulin (beta2-m) is a major structural component of dialysis-related amyloid fibrils. Kozhukh et al. [J. Biol. Chem. 277 (2002) 1310] prepared a series of peptide fragments of beta2-m by the protease digestion and examined their ability to form amyloid fibrils in citrate buffer at pH 2.5. Among various peptides, a 22-residue K3 peptide corresponding to Ser20-Lys41 spontaneously formed amyloid fibrils in aqueous solution. This peptide also formed amyloid protofibrils in 20% (v/v) 2,2,2-trifluoroethanol (TFE). To investigate the influence of solvent conditions on fibril formation, we studied their structures by atomic force microscopy. In aqueous solution, fibrils had a diameter of 4 or 8 nm and tended to cluster each other. On the other hand, protofibrils in 20% (v/v) TFE had a diameter of 2 nm with no tendency of clustering. Intriguingly, when the K3 protofibrils were transferred from 20% (v/v) TFE to aqueous solution, some of them associated to form thicker fibrils with a diameter of 4-15 nm and a left-handed helical twist. TFE is a hydrophobic solvent, so that hydrophobic interactions between molecules may be weakened. The results suggest that the fibrils in aqueous conditions are formed by the cooperative association of protofibrils at the growing ends of the fibrils, in which hydrophobic interactions play a major role.  相似文献   

8.
The polymorphic property of amyloid structures has been focused on as a molecular basis of the presence and propagation of different phenotypes of amyloid diseases, although little is known about the molecular mechanism for expressing diverse structures from only one protein sequence. Here, we have found that, in combination with an enhancing effect of ultrasonication on nucleation, β(2)-microglobulin, a protein responsible for dialysis-related amyloidosis, generates distinct fibril conformations in a concentration-dependent manner in the presence of 2,2,2-trifluoroethanol (TFE). Although the newly formed fibrils all exhibited a similar needle-like morphology with an extensive cross-β core, as suggested by Fourier transform infrared absorption spectra, they differed in thioflavin T intensity, extension kinetics, and tryptophan fluorescence spectra even in the same solvents, representing polymorphic structures. The hydrophobic residues seemed to be more exposed in the fibrils originating at higher concentrations of TFE, as indicated by the increased binding of 1-anilinonaphthalene-8-sulfonic acid, suggesting that the modulation of hydrophobic interactions is critical to the production of polymorphic amyloid structures. Interestingly, the fibrils formed at higher TFE concentrations showed significantly higher stability against guanidium hydrochloride, the perturbation of ionic strength, and, furthermore, pressurization. The cross-β structure inside the fibrils seems to have been more idealized, resulting in increased stability when nucleation occurred in the presence of the alcohol, indicating that a weaker contribution of hydrophobic interactions is intrinsically more amenable to the formation of a non-defective amyloid structure.  相似文献   

9.
Beta(2)-Microglobulin (beta(2)m) is one of over 20 proteins known to be involved in human amyloid disease. Peptides equivalent to each of the seven beta-strands of the native protein, together with an eighth peptide (corresponding to the most stable region in the amyloid precursor conformation formed at pH 3.6, that includes residues in the native strand E plus the eight succeeding residues (named peptide E')), were synthesised and their ability to form fibrils investigated. Surprisingly, only two sequences, both of which encompass the region that forms strand E in native beta(2)m, are capable of forming amyloid-like fibrils in vitro. These peptides correspond to residues 59-71 (peptide E) and 59-79 (peptide E') of intact beta(2)m. The peptides form fibrils under the acidic conditions shown previously to promote amyloid formation from the intact protein (pH <5 at low and high ionic strength), and also associate to form fibrils at neutral pH. Fibrils formed from these two peptides enhance fibrillogenesis of the intact protein. No correlation was found between secondary structure propensity, peptide length, pI or hydrophobicity and the ability of the peptides to associate into amyloid-like fibrils. However, the presence of a relatively high content of aromatic side-chains correlates with the ability of the peptides to form amyloid fibrils. On the basis of these results we propose that residues 59-71 may be important in the self-association of partially folded beta(2)m into amyloid fibrils and discuss the relevance of these results for the assembly mechanism of the intact protein in vitro.  相似文献   

10.
Renal failure impairs the clearance of β2-microglobulin from the serum, with the result that this protein accumulates in joints under the form of amyloid fibrils. While the molecular mechanism leading to deposition of amyloid in vivo is not totally understood, some organic compounds, such as trifluoroethanol (TFE), are commonly used to promote the elongation of amyloid fibrils in vitro. This article gives some insights into the structural properties and the conformational states of β2-microglobulin in the presence of TFE, using both the wild-type protein and the mutant Trp60Gly. The structure of the native state of the protein is rather insensitive to the presence of the alcohol, but the stability of this state is lowered in comparison to some other conformational states. In particular, a native-like folding intermediate is observed in the presence of moderate concentrations of TFE. Instead, at higher concentrations of the alcohol, the population of a disordered native-unlike state is dominant and correlates with the ability to elongate fibrils.  相似文献   

11.
Solvent effects on self-assembly of beta-amyloid peptide.   总被引:5,自引:2,他引:3       下载免费PDF全文
beta-amyloid peptide (A beta) is the primary protein component of senile plaques in Alzheimer's disease patients. Synthetic A beta spontaneously assembles into amyloid fibrils and is neurotoxic to cortical cultures. Neurotoxicity has been associated with the degree of peptide aggregation, yet the mechanism of assembly of A beta into amyloid fibrils is poorly understood. In this work, A beta was dissolved in several different solvents commonly used in neurotoxicity assays. In pure dimethylsulfoxide (DMSO), A beta had no detectable beta-sheet content; in 0.1% trifluoroacetate, the peptide contained one-third beta-sheet; and in 35% acetonitrile/0.1% trifluoroacetate, A beta was two-thirds beta-sheet, equivalent to the fibrillar peptide in physiological buffer. Stock solutions of peptide were diluted into phosphate-buffered saline, and fibril growth was followed by static and dynamic light scattering. The growth rate was substantially faster when the peptide was predissolved in 35% acetonitrile/0.1% trifluoroacetate than in 0.1% trifluoroacetate, 10% DMSO, or 100% DMSO. Differences in growth rate were attributed to changes in the secondary structure of the peptide in the stock solvent. These results suggest that formation of an intermediate with a high beta-sheet content is a controlling step in A beta self-assembly.  相似文献   

12.
To obtain insight into the mechanism of amyloid fibril formation from beta(2)-microglobulin (beta2-m), we prepared a series of peptide fragments using a lysine-specific protease from Achromobacter lyticus and examined their ability to form amyloid fibrils at pH 2.5. Among the nine peptides prepared by the digestion, the peptide Ser(20)-Lys(41) (K3) spontaneously formed amyloid fibrils, confirmed by thioflavin T binding and electron microscopy. The fibrils composed of K3 peptide induced fibril formation of intact beta2-m with a lag phase, distinct from the extension reaction without a lag phase observed for intact beta2-m seeds. Fibril formation of K3 peptide with intact beta2-m seeds also exhibited a lag phase. On the other hand, the extension reaction of K3 peptide with the K3 seeds occurred without a lag phase. At neutral pH, the fibrils composed of either intact beta2-m or K3 peptide spontaneously depolymerized. Intriguingly, the depolymerization of K3 fibrils was faster than that of intact beta2-m fibrils. These results indicated that, although K3 peptide can form fibrils by itself more readily than intact beta2-m, the K3 fibrils are less stable than the intact beta2-m fibrils, suggesting a close relation between the free energy barrier of amyloid fibril formation and its stability.  相似文献   

13.
Dialysis related amyloidosis is a serious complication of long-term hemodialysis in which beta(2)-microglobulin (beta(2)m) forms amyloid fibrils that deposit predominantly in cartilaginous tissues. How these fibrils form in vivo, however, is poorly understood. Here we perform a systematic investigation into the role of macrophages in the formation and degradation of beta(2)m amyloid fibrils, building on observations that macrophages are found in association with beta(2)m amyloid deposits in vivo and that these cells contain intra-lysosomal beta(2)m amyloid. In live cell imaging experiments we demonstrate that macrophages internalize monomeric beta(2)m, whereupon it is sorted to lysosomes. At lysosomal pH beta(2)m self-associates in vitro to form amyloid-like fibrils with an array of morphologies as visualized by atomic force microscopy. Cleavage of the monomeric protein by both macrophages and lysosomal proteases isolated from these cells results in the rapid degradation of the monomeric protein, preventing amyloid formation. Incubation of macrophages with preformed fibrils revealed that macrophages internalize amyloid-like fibrils formed extracellularly, but in marked contrast with the monomeric protein, the fibrils were not degraded within macrophage lysosomes. Correspondingly beta(2)m fibrils were highly resistant to degradation by high concentrations of lysosomal proteases isolated from macrophages. Despite their enormous degradative capacity, therefore, macrophage lysosomes cannot ameliorate dialysis-related amyloidosis by degrading pre-existing amyloid fibrils, but lysosomal proteases may play a protective role by eliminating amyloid precursors before beta(2)m fibrils can accumulate in what may represent an otherwise fibrillogenic environment.  相似文献   

14.
Deposition of insoluble fibrillar aggregates of β‐amyloid (Aβ) peptides in the brain is a hallmark of Alzheimer's disease. Apart from forming fibrils, these peptides also exist as soluble aggregates. Fibrillar and a variety of nonfibrillar aggregates of Aβ have also been obtained in vitro. Hexafluoroisopropanol (HFIP) has been widely used to dissolve Aβ and other amyloidogenic peptides. In this study, we show that the dissolution of Aβ40, 42, and 43 in HFIP followed by drying results in highly ordered aggregates. Although α‐helical conformation is observed, it is not stable for prolonged periods. Drying after prolonged incubation of Aβ40, 42, and 43 peptides in HFIP leads to structural transition from α‐helical to β‐conformation. The peptides form short fibrous aggregates that further assemble giving rise to highly ordered ring‐like structures. Aβ16–22, a highly amyloidogenic peptide stretch from Aβ, also formed very similar rings when dissolved in HFIP and dried. HFIP could not induce α‐helical conformation in Aβ16–22, and rings were obtained from freshly dissolved peptide. The rings formed by Aβ40, 42, 43, and Aβ16–22 are composed of the peptides in β‐conformation and cause enhancement in thioflavin T fluorescence, suggesting that the molecular architecture of these structures is amyloid‐like. Our results clearly indicate that dissolution of Aβ40, 42 and 43 and the amyloidogenic fragment Aβ16–22 in HFIP results in the formation of annular amyloid‐like structures. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
The lysine 58 cleaved and truncated variant of beta(2)-microglobulin (DeltaK58-beta2m) is conformationally unstable and present in the circulation of a large percentage of patients on chronic hemodialysis, suggesting that it could play a role in the beta2-microglobulin (beta2m) amyloid fibrillogenesis associated with dialysis-related amyloidosis (DRA). However, it has yet to be detected in the amyloid deposits of such patients. Here, we extracted amyloid fibrils, without denaturation or additional purification, from different amyloidotic tissues of two unrelated individuals suffering from DRA, and characterized them by high-sensitivity bidimensional gel electrophoresis (2D-PAGE), immunoblotting, MALDI time-of-flight mass spectrometry, and protein sequencing. To confirm whether or not this species could be identified by our proteomic approaches, we mapped its location in 2D-PAGE, in mixtures of pure DeltaK58-beta2m, and extracts of amyloid fibrils from patients, to a discrete region of the gel distinct from other isoforms of beta2m. Using this approach, the two known principal isoforms found in beta2m amyloid were identified, namely, the full-length protein and the truncated species lacking six N-terminal amino acid residues (DeltaN6-beta2m). In contrast, we found no evidence for the presence of DeltaK58-beta2m.  相似文献   

16.
Dialysis-related amyloidosis, which occurs in the patients receiving a long-term hemodialysis with high frequency, accompanies the deposition of amyloid fibrils composed of beta(2)-microglobulin (beta2-m). In vitro, beta2-m forms two kinds of fibrous structures at acidic pH. One is a rigid "mature fibril", and the other is a flexible thin filament often called an "immature fibril". In addition, a 22-residue peptide (K3 peptide) corresponding to Ser20 to Lys41 of intact beta2-m forms rigid amyloid-like fibrils similar to mature fibrils. We compared the core of these three fibrils at single-residue resolution using a recently developed hydrogen/deuterium (H/D) exchange method with the dissolution of fibrils by dimethylsulfoxide (DMSO). The exchange time-course of these fibrils showed large deviations from a single exponential curve showing that, because of the supramolecular structures, the same residue exists in different environments from molecule to molecule, even in a single fibril. The exchange profiles revealed that the core of the immature fibril is restricted to a narrow region compared to that of the mature fibril. In contrast, all residues were protected from exchange in the K3 fibril, indicating that a whole region of the peptide is engaged in the beta-sheet network. These results suggest the mechanism of amyloid fibril formation, in which the core beta-sheet formed by a minimal sequence propagates to form a rigid and extensive beta-sheet network.  相似文献   

17.
One of the most fascinating features of amyloid fibrils is their generic cross-beta architecture that can be formed from many different and completely unrelated proteins. Nonetheless, amyloid fibrils with diverse structural and phenotypic properties can form, both in vivo and in vitro, from the same protein sequence. Here, we have exploited the power of RNA selection techniques to isolate small, structured, single-stranded RNA molecules known as aptamers that were targeted specifically to amyloid-like fibrils formed in vitro from beta(2)-microglobulin (beta(2)m), the amyloid fibril protein associated with dialysis-related amyloidosis. The aptamers bind with high affinity (apparent K(D) approximately nm) to beta(2)m fibrils with diverse morphologies generated under different conditions in vitro, as well as to amyloid fibrils isolated from tissues of dialysis-related amyloidosis patients, demonstrating that they can detect conserved epitopes between different fibrillar species of beta(2)m. Interestingly, the aptamers also recognize some other, but not all, amyloid fibrils generated in vitro or isolated from ex vivo sources. Based on these observations, we have shown that although amyloid fibrils share many common structural properties, they also have features that are unique to individual fibril types.  相似文献   

18.
The aggregation of beta(2)-microglobulin (beta(2)m) into amyloid fibrils occurs in the condition known as dialysis-related amyloidosis (DRA). The protein has a beta-sandwich fold typical of the immunoglobulin family, which is stabilized by a highly conserved disulphide bond linking Cys25 and Cys80. Oxidized beta(2)m forms amyloid fibrils rapidly in vitro at acidic pH and high ionic strength. Here we investigate the role of the single disulphide bond of beta(2)m in amyloidosis in vitro. We show that reduction of the disulphide bond destabilizes the native protein such that non-native molecules are populated at neutral pH. These species are prone to oligomerization but do not form amyloid fibrils when incubated for up to 8 mo at pH 7.0 in 0.4 M NaCl. Over the pH range 4.0-1.5 in the presence of 0.4 M NaCl, however, amyloid fibrils of reduced beta(2)m are formed. These fibrils are approximately 10 nm wide, but are shorter and assemble more rapidly than those produced from the oxidized protein. These data show that population of non-native conformers of beta(2)m at neutral pH by reduction of its single disulphide bond is not sufficient for amyloid formation. Instead, association of one or more specific partially unfolded molecules formed at acid pH are necessary for the formation of beta(2)m amyloid in vitro. Further experiments will now be needed to determine the role of different oligomeric species of beta(2)m in the toxicity of the protein in vivo.  相似文献   

19.
Sasahara K  Naiki H  Goto Y 《Biochemistry》2006,45(29):8760-8769
To understand the initial stages in the formation of amyloid fibrils of beta(2)-microglobulin, a protein responsible for dialysis-related amyloidosis, the effects of heat on the acid-unfolded monomer at pH 2.5 were studied. In the presence of a low concentration of seed fibrils, differential scanning calorimetric thermograms of acid-unfolded beta(2)-microglobulin monomers showed a large decrease in heat capacity with a sigmoidal temperature-dependence, which was subsequently released at higher temperature. Measurements of circular dichroism, atomic force microscopy, ultracentrifugation, and repeated differential scanning calorimetry indicated that the exothermic sigmoidal transition is accompanied by the conversion of about 12% of the monomeric beta(2)-microglobulin molecules into amyloid fibrils, which subsequently dissociate into monomers at high temperature. Interestingly, amyloid fibrils, formed partly after the sigmoidal transition, exhibited a heating rate-dependent, kinetically controlled thermal response, indicating that 12% of the total protein is enough to exhibit the unique thermal response. On the other hand, the salt-induced protofibrils did not show such a calorimetric response, indicating that the kinetic thermal response is unique to the particular structure of fibrils. Taken together, although the calorimetric behavior of amyloid fibrils remains elusive, it may be interpreted in terms of the effects of heat associated with the formation, the association, and the unfolding of fibrils, in which the interactions between specific beta-sheet structures and water molecules play a crucial role and are sensitively reflected in the heat capacity change in protein solution.  相似文献   

20.
Although amyloid fibrils deposit with various proteins, the comprehensive mechanism by which they form remains unclear. We studied the formation of fibrils of human islet amyloid polypeptide associated with type II diabetes in the presence of various concentrations of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) under acidic and neutral pH conditions using CD, amyloid-specific thioflavin T fluorescence, fluorescence imaging with thioflavin T, and atomic force microscopy. At low pH, the formation of fibrils was promoted by HFIP with an optimum at 5% (v/v). At neutral pH in the absence of HFIP, significant amounts of amorphous aggregates formed in addition to the fibrils. The addition of HFIP suppressed the formation of amorphous aggregates, leading to a predominance of fibrils with an optimum effect at 25% (v/v). Under both conditions, higher concentrations of HFIP dissolved the fibrils and stabilized the α-helical structure. The results indicate that fibrils and amorphous aggregates are different types of precipitates formed by exclusion from water-HFIP mixtures. The exclusion occurs through the combined effects of hydrophobic interactions and electrostatic interactions, both of which are strengthened by low concentrations of HFIP, and a subtle balance between the two types of interactions determines whether the fibrils or amorphous aggregates dominate. We suggest a general view of how the structure of precipitates varies dramatically from single crystals to amyloid fibrils and amorphous aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号