首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
How a long strand of genomic DNA is compacted into a mitotic chromosome remains one of the basic questions in biology. The nucleosome fibre, in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fibre and further hierarchical regular structures to form mitotic chromosomes, although the actual existence of these regular structures is controversial. Here, we show that human mitotic HeLa chromosomes are mainly composed of irregularly folded nucleosome fibres rather than 30-nm chromatin fibres. Our comprehensive and quantitative study using cryo-electron microscopy and synchrotron X-ray scattering resolved the long-standing contradictions regarding the existence of 30-nm chromatin structures and detected no regular structure >11 nm. Our finding suggests that the mitotic chromosome consists of irregularly arranged nucleosome fibres, with a fractal nature, which permits a more dynamic and flexible genome organization than would be allowed by static regular structures.  相似文献   

3.
4.
Mitotic chromosomes are essential structures for the faithful transmission of duplicated genomic DNA into two daughter cells during cell division. Although more than 100 years have passed since chromosomes were first observed, it remains unclear how a long string of genomic DNA is packaged into compact mitotic chromosomes. Although the classical view is that human chromosomes consist of radial 30 nm chromatin loops that are somehow tethered centrally by scaffold proteins, called condensins, cryo-electron microscopy observation of frozen hydrated native chromosomes reveals a homogeneous, grainy texture and neither higher-order nor periodic structures including 30 nm chromatin fibres were observed. As a compromise to fill this huge gap, we propose a model in which the radial chromatin loop structures in the classic view are folded irregularly toward the chromosome centre with the increase in intracellular cations during mitosis. Consequently, compact native chromosomes are made up primarily of irregular chromatin networks cross-linked by self-assembled condensins forming the chromosome scaffold.  相似文献   

5.
6.
The mammalian genome is compacted to fit within the confines of the cell nucleus. DNA is wrapped around nucleosomes, forming the classic ‘beads‐on‐a‐string’ 10‐nm chromatin fibre. Ten‐nanometre chromatin fibres are thought to condense into 30‐nm fibres. This structural reorganization is widely assumed to correspond to transitions between active and repressed chromatin, thereby representing a chief regulatory event. Here, by combining electron spectroscopic imaging with tomography, three‐dimensional images are generated, revealing that both open and closed chromatin domains in mouse somatic cells comprise 10‐nm fibres. These findings indicate that the 30‐nm chromatin model does not reflect the true regulatory structure in vivo.  相似文献   

7.
8.
9.
10.
Conformational changes in chromatin structure are nowadays the object of intensive research due to its importance for proper regulation of intranuclear processes. The fine structure of chromatin within the DNA replication sites was studied in in situ fixed cells and cells permebilized by low ionic strength solutions in the presence of divalent cations. The latter method provides visualization of higher level chromatin structures such as globular chromomeres and chromonema fibres. Nascent DNA was detected immunochemically using anti-BrdU antibodies on the surface of ultrathin sections prepared from Epon-embedded material. It was shown that newly replicated DNA preferentially localized within the zones filled with globular and fibrillar elements with characteristic diameter of 30 nm, and not in chromonema fibres, while after replication had been completed DNA became embedded into as thick as 60-80 nm chromonema elements. The results obtained are discussed in the context of conception of hierarchical folding of chromatin fibers.  相似文献   

11.
12.
The structural organization of the dense chromatin in G1, S and G2 of onion meristem cells has been evaluated. A naturally synchronous subpopulation of caffeineinduced binucleate cells was employed. — Fibre size is positively correlated with cell stage in interphase. Fibre size distribution is unimodal in G1 nuclei with the peak at 12.5 nm in diameter, while in G2 the distribution is bimodal due to a new population of thicker fibres (22.5 nm in diameter). Separation between fibre centres takes place between mid G1 and mid S. — Using stereological principles, the length of chromatin fibres integrated in the chromatin patches could be estimated. This length remains constant from mid G1 to mid S, when a 1.5 fold increase in total DNA takes place. On the other hand, 40 mm/hour of chromatin fibre is integrated in the chromatin patches between mid S and mid G2. Comparable data of the relative proportion of the different nuclear components have been obtained in each interphase period. — The reported changes provide evidence of a cyclic pattern of chromatin condensation, which may be the structural support for a model of chromatin function in these cycling cells.  相似文献   

13.
14.
15.
16.
The superstructure of chromatin and its condensation mechanism   总被引:8,自引:0,他引:8  
Synchroton radiation X-ray scattering experiments have been performed on chicken erythrocyte chromatin fibres over a wide range of ionic conditions and on various states of the fibres (i.e. "native" in solution, in gels and in whole nuclei; chromatin depleted of the H1 (H5) histones and chromatin with bound ethidium bromide). A correlation between the results obtained with the various chromatin preparations provides evidence for a model according to which at low ionic strength the chromatin fibre already possesses a helical superstructure, with a diameter comparable to that of condensed chromatin, held together by the H1(H5) histone. The most significant structural modification undergone upon an increase of the ionic strength is a reduction of the helix pitch, this leads to condensation in a manner similar to the folding of an accordion. The details of this process depend on whether monovalent or divalent cations are used to raise the ionic strength, the latter producing a much higher degree of condensation. Measurements of the relative increase of the mass per unit length indicate that the most condensed state is a helical structure with a pitch around 3.0-4.0 nm. In this paper we give a detailed presentation of the experimental evidence obtained from static and time-resolved scattering experiments, which led to this model.  相似文献   

17.
Chromosomes of root tip cells ofAllium cepa andAllium sativum were studied in early, middle and late telophase to examine the organization of mitotic chromosomes, taking advantage of the naturally occurring chromosome dispersion during the process of decondensation in telophase. Longitudinal and transverse sections of telophase chromosomes viewed under the transmission electron microscope showed that mitotic chromosomes inAllium were composed of helically coiled 400–550 nm chromatin fibres. In some regions of the longitudinal sections, these chromatin fibres were seen to be orientated parallel to one another but formed roughly a right angle to the long axis of the chromosome. In transverse sections, the telophase chromosome appeared to have a hollow centre encircled by the 400–550 nm chromatin fibre which in turn was a hollow tube structure formed by the coiling of a thinner fibre of 170–200 nm. In addition, cross views of chromatin fibres of 170–200 nm and 50–70 nm were also identified in telophase chromosome preparations. These two organizational levels of chromatin fibres also showed a hollow centre. The process of decondensation of telophase chromosomes is described, and some morphological characteristics associated with the activities of chromosome decondensation are analysed. Based on the observations made onAllium chromosomes in this study, various models of chromosome organization are discussed.  相似文献   

18.
In this paper we analyse in detail the orientation of X-ray diffraction diagrams obtained from the following materials: nucleosome cores, whole nuclei and the sodium and thallium salts of H1-depleted nucleohistone and of briefly digested chromatin. Our analysis indicates that spacer DNA is organized in bundles of parallel segments which contribute to the equatorial maxima in the diagrams. Several models are compatible with this organization, in particular a modified solenoid model in which the central part is filled with such a bundle of spacer DNA segments parallel to the axis of the fibre. It is also shown that spacer DNA is covered by histones, probably the N-terminal regions. This observation indicates that the differential activity of nucleases on chromatin is strongly influenced by conformational features of DNA. An analysis of the orientation of the low angle rings found in the X-ray diffraction patterns of H1-depleted nucleohistone shows that the 11 nm peak has maxima which are ~ 0.007 nm?1 off the meridian. The 5.5 and 8 nm peaks have a meridional maximum plus two side maxima which occur at spacings between 0.02 and 0.055 nm?1 from the meridian, depending on the conditions. A comparison of these results with those reported by Finch et al.1 for crystals indicates that in fibres the nucleosome cores are arranged with their short axis perpendicular to the axis of the fibre. Some evidence on the path of DNA in the nucleosome cores is also obtained.  相似文献   

19.
20.
In this paper we describe a detailed investigation of the reconstitution of nucleosome cores from poly (dA-dT) and the octamer of histones. We also attempted the reconstitution from the copolymers poly dA.poly dT, poly dG.poly dC and poly (dG-dC). The repeat of the reconstituted chromatin fibre is discussed. The micrococcal nuclease released poly (dA-dT) core particle is found to contain a considerably narrower DNA size distribution that of the native random DNA nucleosome core (12). In addition we have succeeded in obtaining small crystals of the poly (dA-dT) nucleosome core. The DNAase I digestion pattern of the poly (dA-dT) containing nucleosome core is presented. The periodicity of DNAase I cutting sites is found to be about 10.5 bases and is similar to that of the native nucleosome core (12, 13).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号