首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonsense‐mediated mRNA decay (NMD) is a translation‐linked process that destroys mRNAs with premature translation termination codons (PTCs). In mammalian cells, NMD is also linked to pre‐mRNA splicing, usually PTCs trigger strong NMD only when positioned upstream of at least one intron. The exon junction complex (EJC) is believed to mediate the link between splicing and NMD in these systems. Here, we report that in Schizosaccharomyces pombe splicing also enhances NMD, but against the EJC model prediction, an intron stimulated NMD regardless of whether it is positioned upstream or downstream of the PTC and EJC components are not required. Still the effect of splicing seems to be direct—we have found that the important NMD determinant is the proximity of an intron to the PTC, not just the occurrence of splicing. On the basis of these results, we propose a new model to explain how splicing could affect NMD.  相似文献   

2.
3.
Alternative mRNA splicing adds a layer of regulation to the expression of thousands of genes in Drosophila melanogaster. Not all alternative splicing results in functional protein; it can also yield mRNA isoforms with premature stop codons that are degraded by the nonsense-mediated mRNA decay (NMD) pathway. This coupling of alternative splicing and NMD provides a mechanism for gene regulation that is highly conserved in mammals. NMD is also active in Drosophila, but its effect on the repertoire of alternative splice forms has been unknown, as has the mechanism by which it recognizes targets. Here, we have employed a custom splicing-sensitive microarray to globally measure the effect of alternative mRNA processing and NMD on Drosophila gene expression. We have developed a new algorithm to infer the expression change of each mRNA isoform of a gene based on the microarray measurements. This method is of general utility for interpreting splicing-sensitive microarrays and high-throughput sequence data. Using this approach, we have identified a high-confidence set of 45 genes where NMD has a differential effect on distinct alternative isoforms, including numerous RNA–binding and ribosomal proteins. Coupled alternative splicing and NMD decrease expression of these genes, which may in turn have a downstream effect on expression of other genes. The NMD–affected genes are enriched for roles in translation and mitosis, perhaps underlying the previously observed role of NMD factors in cell cycle progression. Our results have general implications for understanding the NMD mechanism in fly. Most notably, we found that the NMD–target mRNAs had significantly longer 3′ untranslated regions (UTRs) than the nontarget isoforms of the same genes, supporting a role for 3′ UTR length in the recognition of NMD targets in fly.  相似文献   

4.
Aberrant mRNAs harboring premature termination codons (PTCs or nonsense codons) are degraded by the nonsense-mediated mRNA decay (NMD) pathway. mRNAs transcribed from genes that naturally acquire PTCs during lymphocyte development are strongly downregulated by PTCs. Here we show that a signal essential for this robust mRNA downregulatory response is efficient RNA splicing. Strong mRNA downregulation can be conferred on a poor NMD substrate by either strengthening its splicing signals or removing its weak introns. Efficient splicing also strongly promotes translation, providing a molecular explanation for enhanced NMD and suggesting that efficient splicing may have evolved to enhance both protein production and RNA surveillance. Our results suggest simple approaches for increasing protein expression from expression vectors and treating human genetic diseases caused by nonsense and frameshift mutations.  相似文献   

5.
Nonsense-mediated decay (NMD), also called mRNA surveillance, is an evolutionarily conserved pathway that degrades mRNAs that prematurely terminate translation. To date, the pathway in mammalian cells has been shown to depend on the presence of a cis-acting destabilizing element that usually consists of an exon-exon junction generated by the process of pre-mRNA splicing. Whether or not mRNAs that derive from naturally intronless genes, that is, mRNAs not formed by the process of splicing, are also subject to NMD has yet to be investigated. The possibility of NMD is certainly reasonable considering that mRNAs of Saccharomyces cerevisiae are subject to NMD even though most derive from naturally intronless genes. In fact, mRNAs of S. cerevisiae generally harbor a loosely defined splicing-independent destabilizing element that has been proposed to function in NMD analogously to the spliced exon-exon junction of mammalian mRNAs. Here, we demonstrate that nonsense codons introduced into naturally intronless genes encoding mouse heat shock protein 70 or human histone H4 fail to elicit NMD. Failure is most likely because each mRNA lacks a cis-acting destabilizing element, because insertion of a spliceable intron a sufficient distance downstream of a nonsense codon within either gene is sufficient to elicit NMD.  相似文献   

6.
7.
Messenger RNAs (mRNAs) that contain premature translation termination codons (PTCs) are targeted for rapid degradation in all eukaryotes tested. The mechanisms of nonsense-mediated mRNA decay (NMD) have been described in considerable detail, but the biological roles of NMD in wild-type organisms are poorly understood. mRNAs of wild-type organisms known to be degraded by NMD ("natural targets" of NMD) include by-products of regulated alternative splicing, out-of-frame mRNAs derived from unproductive gene rearrangements, cytoplasmic pre-mRNAs, endogenous retroviral and transposon RNAs, and mRNAs having upstream open reading frames or other unusual sequence features. NMD may function to eliminate aberrant PTC-containing mRNAs in order to protect cells from expression of potentially deleterious truncated proteins. Pseudogenes are nonfunctional genes or gene fragments that accumulate mutations through genetic drift. Such mutations will often introduce shifts of reading frame and/or PTCs, and mRNAs of expressed pseudogenes may thus be substrates of NMD. We demonstrate that mRNAs expressed from C. elegans pseudogenes are degraded by NMD and discuss possible implications for both mRNA surveillance and protein evolution. We describe an expressed pseudogene that encodes a small nucleolar RNA (snoRNA) within an intron and suggest this represents an evolutionary intermediate between snoRNA-encoding host genes that do or do not encode proteins.  相似文献   

8.
9.
10.
11.
12.
13.
A new function for nonsense-mediated mRNA-decay factors   总被引:10,自引:0,他引:10  
mRNAs often contain premature-termination (nonsense) codons as a result of mutations and RNA splicing errors. These nonsense codons cause rapid decay of the mRNAs that contain them, a phenomenon called nonsense-mediated mRNA decay (NMD). This response is thought to be a quality-control mechanism that protects cells from truncated dominant-negative proteins. Surprisingly, recent evidence strongly suggests that the NMD factors UPF1, UPF2, UPF3B, RNPS1, Y14 and MAGOH also promote translation of normal mRNAs in mammalian cells. This, along with an earlier discovery that NMD factors appear to dictate efficient translation termination, suggests that NMD factors do not merely function in RNA surveillance. These findings lead to the interesting question of why NMD factors evolved; are they for RNA-quality control or to promote efficient translation initiation and termination?  相似文献   

14.
Nonsense-mediated decay of mutant waxy mRNA in rice   总被引:13,自引:0,他引:13  
  相似文献   

15.
16.
Many small nucleolar RNAs (snoRNAs) are encoded within introns of protein-encoding genes and are released by processing of their host pre-mRNA. We have investigated the mechanism of processing of the yeast U18 snoRNA, which is found in the intron of the gene coding for translational elongation factor EF-1β. We have focused our analysis on the relationship between splicing of the EF-1β pre-mRNA and production of the mature snoRNA. Mutations inhibiting splicing of the EF-1β pre-mRNA have been shown to produce normal U18 snoRNA levels together with the accumulation of intermediates deriving from the pre-mRNA, thus indicating that the precursor is an efficient processing substrate. Inhibition of 5′→3′ exonucleases obtained by insertion of G cassettes or by the use of a rat1-1 xrn1Δ mutant strain does not impair U18 release. In the Exo strain, 3′ cutoff products, diagnostic of an endonuclease-mediated processing pathway, were detected. Our data indicate that biosynthesis of the yeast U18 snoRNA relies on two different pathways, depending on both exonucleolytic and endonucleolytic activities: a major processing pathway based on conversion of the debranched intron and a minor one acting by endonucleolytic cleavage of the pre-mRNA.  相似文献   

17.
Exon tethering in transcription by RNA polymerase II   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
Plocik AM  Guthrie C 《PLoS genetics》2012,8(3):e1002620
Ribosomal proteins are essential to life. While the functions of ribosomal protein-encoding genes (RPGs) are highly conserved, the evolution of their regulatory mechanisms is remarkably dynamic. In Saccharomyces cerevisiae, RPGs are unusual in that they are commonly present as two highly similar gene copies and in that they are over-represented among intron-containing genes. To investigate the role of introns in the regulation of RPG expression, we constructed 16 S. cerevisiae strains with precise deletions of RPG introns. We found that several yeast introns function to repress rather than to increase steady-state mRNA levels. Among these, the RPS9A and RPS9B introns were required for cross-regulation of the two paralogous gene copies, which is consistent with the duplication of an autoregulatory circuit. To test for similar intron function in animals, we performed an experimental test and comparative analyses for autoregulation among distantly related animal RPS9 orthologs. Overexpression of an exogenous RpS9 copy in Drosophila melanogaster S2 cells induced alternative splicing and degradation of the endogenous copy by nonsense-mediated decay (NMD). Also, analysis of expressed sequence tag data from distantly related animals, including Homo sapiens and Ciona intestinalis, revealed diverse alternatively-spliced RPS9 isoforms predicted to elicit NMD. We propose that multiple forms of splicing regulation among RPS9 orthologs from various eukaryotes operate analogously to translational repression of the alpha operon by S4, the distant prokaryotic ortholog. Thus, RPS9 orthologs appear to have independently evolved variations on a fundamental autoregulatory circuit.  相似文献   

20.
目的:研究基因Srrm1/SRm160的可变剪接。方法:应用RT-PCR研究Srrm1/SRm160的可变剪接,通过蛋白质的翻译抑制和RNA干扰研究剪接异构体是否经历无义突变介导的mRNA降解(NMD)过程。结果:获得Srrm1/SRm160新的可变剪接异构体,该异构体产生提前终止密码子,翻译抑制和RNA干扰证实含有提前终止密码子的剪接体经过NMD而降解。结论:Srrm1/SRm160通过可变剪接和NMD调节自身的表达水平,作为剪接因子进一步调节其他基因的可变剪接。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号