首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The field of phylogeography has long since realized the need and utility of incorporating nuclear DNA (nDNA) sequences into analyses. However, the use of nDNA sequence data, at the population level, has been hindered by technical laboratory difficulty, sequencing costs, and problematic analytical methods dealing with genotypic sequence data, especially in non-model organisms. Here, we present a method utilizing the 454 GS-FLX Titanium pyrosequencing platform with the capacity to simultaneously sequence two species of sea star (Meridiastra calcar and Parvulastra exigua) at five different nDNA loci across 16 different populations of 20 individuals each per species. We compare results from 3 populations with traditional Sanger sequencing based methods, and demonstrate that this next-generation sequencing platform is more time and cost effective and more sensitive to rare variants than Sanger based sequencing. A crucial advantage is that the high coverage of clonally amplified sequences simplifies haplotype determination, even in highly polymorphic species. This targeted next-generation approach can greatly increase the use of nDNA sequence loci in phylogeographic and population genetic studies by mitigating many of the time, cost, and analytical issues associated with highly polymorphic, diploid sequence markers.  相似文献   

2.
Constructing mixtures of tagged or bar-coded DNAs for sequencing is an important requirement for the efficient use of next-generation sequencers in applications where limited sequence data are required per sample. There are many applications in which next-generation sequencing can be used effectively to sequence large mixed samples; an example is the characterization of microbial communities where ≤1,000 sequences per samples are adequate to address research questions. Thus, it is possible to examine hundreds to thousands of samples per run on massively parallel next-generation sequencers. However, the cost savings for efficient utilization of sequence capacity is realized only if the production and management costs associated with construction of multiplex pools are also scalable. One critical step in multiplex pool construction is the normalization process, whereby equimolar amounts of each amplicon are mixed. Here we compare three approaches (spectroscopy, size-restricted spectroscopy, and quantitative binding) for normalization of large, multiplex amplicon pools for performance and efficiency. We found that the quantitative binding approach was superior and represents an efficient scalable process for construction of very large, multiplex pools with hundreds and perhaps thousands of individual amplicons included. We demonstrate the increased sequence diversity identified with higher throughput. Massively parallel sequencing can dramatically accelerate microbial ecology studies by allowing appropriate replication of sequence acquisition to account for temporal and spatial variations. Further, population studies to examine genetic variation, which require even lower levels of sequencing, should be possible where thousands of individual bar-coded amplicons are examined in parallel.Emergent technologies that generate DNA sequence data are designed primarily to perform resequencing projects at reasonable cost. The result is a substantial decrease in per base costs from traditional methods. However, these next-generation platforms do not readily accommodate projects that require obtaining moderate amounts of sequence from large numbers of samples. These platforms also have per run costs that are significant and generally preclude large numbers of single-sample, nonmultiplexed runs. One example of research that is not readily supported is rRNA-directed metagenomics study of some human clinical samples or environmental rRNA analysis of samples from communities with low community diversity that require only thousands of sequences. Thus, strategies to utilize next-generation DNA sequencers efficiently for applications that require lower throughput are critical to capitalize on the efficiency and cost benefits of next-generation sequencing platforms.Directed metagenomics based on amplification of rRNA genes is an important tool to characterize microbial communities in various environmental and clinical settings. In diverse environmental samples, large numbers of sequences are required to fully characterize the microbial communities (15). However, a lower number of sequences is generally adequate to answer specific research questions. In addition, the levels of diversity in human clinical samples are usually lower than what is observed in environmental samples (for example, see reference 7).The Roche 454 genome sequencer system FLX pyrosequencer (which we will refer to as 454 FLX hereafter) is the most useful platform for rRNA-directed metagenomics because it currently provides the longest read lengths of any next-generation sequencing platform (1, 14). Computational analysis has shown that the 250-nucleotide read length (available from the 454 FLX-LR chemistry) is adequate for identification of bacteria if the amplified region is properly positioned within variable regions of the small-subunit rRNA (SSU-rRNA) gene (9, 10).In this study, we used the 454 FLX-LR genome sequencing platform and chemistry, which provides >400,000 sequences of ∼250 bp per run. After we conducted this study, a new reagent set (454 FLX-XLR titanium chemistry) was released, which further increases reads to >1,000,000 and read lengths to >400 bp (Roche). The 454 FLX platform dramatically reduces per base costs of obtaining sequence, and physical separation into between 2 and 16 lanes is available; this physical separation on the plate reduces sequencing output overall, up to 40% comparing 2 lanes versus 16 lanes. For applications where modest sequencing depth (∼1,000 sequences per sample) is adequate to address research questions, physical separation does not allow adequate sample multiplexing because even a 1/16 454 FLX-LR plate run is expected to produce ∼15,000 reads. Further, the utility of the platform as a screening tool at 16-plex is limited by cost per run.A solution to make next-generation sequencing economical for projects such as rRNA-directed metagenomics is to use bar-coded primers to multiplex amplicon pools so they can be sequenced together and computationally separated afterward (6). To successfully accomplish this strategy, precise normalization of the DNA concentrations of the individual amplicons in the multiplex pools is essential for effective multiplex sequencing when large numbers of pooled samples are sequenced in parallel. There are several potential methods available for normalizing concentrations of amplicons included in multiplex pools, but the relative and absolute performance of each approach has not been compared.In this study, we present a direct quantitative comparison of three available methods for amplicon pool normalization for downstream next-generation sequencing. The central goal of the study was to identify the most effective method for normalizing multiplex pools containing >100 individual amplicons. We evaluated each pooling approach by 454 sequencing and compared the observed frequencies of sequences from different pooled bar-coded amplicons. From these data, we determined the efficacy of each method based on the following factors: (i) how well normalized the sequences within the pool were, (ii) the proportion of samples failing to meet a minimum threshold of sequences per sample, and (iii) the overall efficiency (speed and labor required) of the process to multiplex samples.  相似文献   

3.
The Genome Sequencer FLX System (GS FLX), powered by 454 Sequencing, is a next-generation DNA sequencing technology featuring a unique mix of long reads, exceptional accuracy, and ultra-high throughput. It has been proven to be the most versatile of all currently available next-generation sequencing technologies, supporting many high-profile studies in over seven applications categories. GS FLX users have pursued innovative research in de novo sequencing, re-sequencing of whole genomes and target DNA regions, metagenomics, and RNA analysis. 454 Sequencing is a powerful tool for human genetics research, having recently re-sequenced the genome of an individual human, currently re-sequencing the complete human exome and targeted genomic regions using the NimbleGen sequence capture process, and detected low-frequency somatic mutations linked to cancer.  相似文献   

4.
新一代测序技术在植物转录组研究中的应用   总被引:7,自引:0,他引:7  
Liang Y  Chen SY  Liu GS 《遗传》2011,33(12):1317-1326
随着DNA测序技术的发展,新一代测序技术以其高通量、低成本的特点,成为越来越多的生物学研究者在开展工作时的首选。在所有的新一代测序技术中,454测序系统是最早实现商业化且发展相对成熟的一种,目前被广泛的应用于各个领域的生物学研究中。文章以454测序系统为例,综述了新一代测序系统的原理、优缺点,及其在植物转录组研究中的应用,并对其在植物研究领域中可能的发展应用方向进行了展望。  相似文献   

5.
To date we have little knowledge of how accurate next-generation sequencing (NGS) technologies are in sequencing repetitive sequences beyond known limitations to accurately sequence homopolymers. Only a handful of previous reports have evaluated the potential of NGS for sequencing short tandem repeats (microsatellites) and no empirical study has compared and evaluated the performance of more than one NGS platform with the same dataset. Here we examined yeast microsatellite variants from both long-read (454-sequencing) and short-read (Illumina) NGS platforms and compared these to data derived through Sanger sequencing. In addition, we investigated any locus-specific biases and differences that might have resulted from variability in microsatellite repeat number, repeat motif or type of mutation. Out of 112 insertion/deletion variants identified among 45 microsatellite amplicons in our study, we found 87.5% agreement between the 454-platform and Sanger sequencing in frequency of variant detection after Benjamini-Hochberg correction for multiple tests. For a subset of 21 microsatellite amplicons derived from Illumina sequencing, the results of short-read platform were highly consistent with the other two platforms, with 100% agreement with 454-sequencing and 93.6% agreement with the Sanger method after Benjamini-Hochberg correction. We found that the microsatellite attributes copy number, repeat motif and type of mutation did not have a significant effect on differences seen between the sequencing platforms. We show that both long-read and short-read NGS platforms can be used to sequence short tandem repeats accurately, which makes it feasible to consider the use of these platforms in high-throughput genotyping. It appears the major requirement for achieving both high accuracy and rare variant detection in microsatellite genotyping is sufficient read depth coverage. This might be a challenge because each platform generates a consistent pattern of non-uniform sequence coverage, which, as our study suggests, may affect some types of tandem repeats more than others.  相似文献   

6.
Rapid advances in sequencing technology have changed the experimental landscape of microbial ecology. In the last 10 years, the field has moved from sequencing hundreds of 16S rRNA gene fragments per study using clone libraries to the sequencing of millions of fragments per study using next-generation sequencing technologies from 454 and Illumina. As these technologies advance, it is critical to assess the strengths, weaknesses, and overall suitability of these platforms for the interrogation of microbial communities. Here, we present an improved method for sequencing variable regions within the 16S rRNA gene using Illumina''s MiSeq platform, which is currently capable of producing paired 250-nucleotide reads. We evaluated three overlapping regions of the 16S rRNA gene that vary in length (i.e., V34, V4, and V45) by resequencing a mock community and natural samples from human feces, mouse feces, and soil. By titrating the concentration of 16S rRNA gene amplicons applied to the flow cell and using a quality score-based approach to correct discrepancies between reads used to construct contigs, we were able to reduce error rates by as much as two orders of magnitude. Finally, we reprocessed samples from a previous study to demonstrate that large numbers of samples could be multiplexed and sequenced in parallel with shotgun metagenomes. These analyses demonstrate that our approach can provide data that are at least as good as that generated by the 454 platform while providing considerably higher sequencing coverage for a fraction of the cost.  相似文献   

7.
Quick and accurate identification of microbial pathogens is essential for both diagnosis and response to emerging infectious diseases. The advent of next-generation sequencing technology offers an unprecedented platform for rapid sequencing-based identification of novel viruses. We have developed a customized bioinformatics data analysis pipeline, VirusHunter, for the analysis of Roche/454 and other long read Next generation sequencing platform data. To illustrate the utility of VirusHunter, we performed Roche/454 GS FLX titanium sequencing on two unclassified virus isolates from the World Reference Center for Emerging Viruses and Arboviruses (WRCEVA). VirusHunter identified sequences derived from a novel bunyavirus and a novel reovirus in the two samples respectively. Further sequence analysis demonstrated that the viruses were novel members of the Phlebovirus and Orbivirus genera. Both Phlebovirus and Orbivirus genera include many economic important viruses or serious human pathogens.  相似文献   

8.
The ultimate goal of metagenome research projects is to understand the ecological roles and physiological functions of the microbial communities in a given natural environment. The 454 pyrosequencing platform produces the longest reads among the most widely used next generation sequencing platforms. Since the relatively longer reads of the 454 platform provide more information for identification of microbial sequences, this platform is dedicated to microbial community and population studies. In order to accurately perform the downstream analysis of the 454 multiplex datasets, it is necessary to remove artificially designed sequences located at either ends of individual reads and to correct low-quality sequences. We have developed a program called PyroTrimmer that removes the barcodes, linkers, and primers, trims sequence regions with low quality scores, and filters out low-quality sequence reads. Although these functions have previously been implemented in other programs as well, PyroTrimmer has novelty in terms of the following features: i) more sensitive primer detection using Levenstein distance and global pairwise alignment, ii) the first stand-alone software with a graphic user interface, and iii) various options for trimming and filtering out the low-quality sequence reads. PyroTrimmer, written in JAVA, is compatible with multiple operating systems and can be downloaded free at http://pyrotrimmer.kobic.re.kr.  相似文献   

9.
10.
Multilocus sequence typing (MLST) is a widely used system for typing microorganisms by sequence analysis of housekeeping genes. The main advantage of MLST in comparison to other typing techniques is the unambiguity and transferability of sequence data. However, a main disadvantage is the high cost of DNA sequencing. Here we introduce a high-throughput MLST (HiMLST) method that employs next-generation sequencing (NGS) technology (Roche 454), to generate large quantities of high-quality MLST data at low costs. The HiMLST protocol consists of two steps. In the first step MLST target genes are amplified by PCR in multi-well plates. During this PCR the amplicons of each bacterial isolate are provided with a unique DNA barcode, the multiplex identifier (MID). In the second step all amplicons are pooled and sequenced in a single NGS-run. The MLST profile of each individual isolate can be retrieved easily using its unique MID. With HiMLST we have profiled 575 isolates of Legionella pneumophila, Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pneumoniae in mixed species HiMLST experiments. In conclusion, the introduction of HiMLST paves the way for a broad employment of the MLST as a high-quality and cost-effective method for typing microbial species.  相似文献   

11.
Optimal integration of next-generation sequencing into mainstream research requires re-evaluation of how problems can be reasonably overcome and what questions can be asked. One potential application is the rapid acquisition of genomic information to identify microsatellite loci for evolutionary, population genetic and chromosome linkage mapping research on non-model and not previously sequenced organisms. Here, we report on results using high-throughput sequencing to obtain a large number of microsatellite loci from the venomous snake Agkistrodon contortrix, the copperhead. We used the 454 Genome Sequencer FLX next-generation sequencing platform to sample randomly ∼27 Mbp (128 773 reads) of the copperhead genome, thus sampling about 2% of the genome of this species. We identified microsatellite loci in 11.3% of all reads obtained, with 14 612 microsatellite loci identified in total, 4564 of which had flanking sequences suitable for polymerase chain reaction primer design. The random sequencing-based approach to identify microsatellites was rapid, cost-effective and identified thousands of useful microsatellite loci in a previously unstudied species.  相似文献   

12.
The characterization of bacterial communities using DNA sequencing has revolutionized our ability to study microbes in nature and discover the ways in which microbial communities affect ecosystem functioning and human health. Here we describe Serial Illumina Sequencing (SI-Seq): a method for deep sequencing of the bacterial 16S rRNA gene using next-generation sequencing technology. SI-Seq serially sequences portions of the V5, V6 and V7 hypervariable regions from barcoded 16S rRNA amplicons using an Illumina short-read genome analyzer. SI-Seq obtains taxonomic resolution similar to 454 pyrosequencing for a fraction of the cost, and can produce hundreds of thousands of reads per sample even with very high multiplexing. We validated SI-Seq using single species and mock community controls, and via a comparison to cystic fibrosis lung microbiota sequenced using 454 FLX Titanium. Our control runs show that SI-Seq has a dynamic range of at least five orders of magnitude, can classify >96% of sequences to the genus level, and performs just as well as 454 and paired-end Illumina methods in estimation of standard microbial ecology diversity measurements. We illustrate the utility of SI-Seq in a pilot sample of central airway secretion samples from cystic fibrosis patients.  相似文献   

13.
Mutations in mitochondrial DNA (mtDNA) may cause maternally-inherited cardiomyopathy and heart failure. In homoplasmy all mtDNA copies contain the mutation. In heteroplasmy there is a mixture of normal and mutant copies of mtDNA. The clinical phenotype of an affected individual depends on the type of genetic defect and the ratios of mutant and normal mtDNA in affected tissues. We aimed at determining the sensitivity of next-generation sequencing compared to Sanger sequencing for mutation detection in patients with mitochondrial cardiomyopathy. We studied 18 patients with mitochondrial cardiomyopathy and two with suspected mitochondrial disease. We “shotgun” sequenced PCR-amplified mtDNA and multiplexed using a single run on Roche''s 454 Genome Sequencer. By mapping to the reference sequence, we obtained 1,300× average coverage per case and identified high-confidence variants. By comparing these to >400 mtDNA substitution variants detected by Sanger, we found 98% concordance in variant detection. Simulation studies showed that >95% of the homoplasmic variants were detected at a minimum sequence coverage of 20× while heteroplasmic variants required >200× coverage. Several Sanger “misses” were detected by 454 sequencing. These included the novel heteroplasmic 7501T>C in tRNA serine 1 in a patient with sudden cardiac death. These results support a potential role of next-generation sequencing in the discovery of novel mtDNA variants with heteroplasmy below the level reliably detected with Sanger sequencing. We hope that this will assist in the identification of mtDNA mutations and key genetic determinants for cardiomyopathy and mitochondrial disease.  相似文献   

14.
The application of next-generation sequencing (NGS) technologies for the development of simple sequence repeat (SSR) or microsatellite loci for genetic research in the botanical sciences is described. Microsatellite markers are one of the most informative and versatile DNA-based markers used in plant genetic research, but their development has traditionally been a difficult and costly process. NGS technologies allow the efficient identification of large numbers of microsatellites at a fraction of the cost and effort of traditional approaches. The major advantage of NGS methods is their ability to produce large amounts of sequence data from which to isolate and develop numerous genome-wide and gene-based microsatellite loci. The two major NGS technologies with emergent application in SSR isolation are 454 and Illumina. A review is provided of several recent studies demonstrating the efficient use of 454 and Illumina technologies for the discovery of microsatellites in plants. Additionally, important aspects during NGS isolation and development of microsatellites are discussed, including the use of computational tools and high-throughput genotyping methods. A data set of microsatellite loci in the plastome and mitochondriome of cranberry (Vaccinium macrocarpon Ait.) is provided to illustrate a successful application of 454 sequencing for SSR discovery. In the future, NGS technologies will massively increase the number of SSRs and other genetic markers available to conduct genetic research in understudied but economically important crops such as cranberry.  相似文献   

15.
Heteroplasmy, the existence of multiple mtDNA types within an individual, has been previously detected by using mostly indirect methods and focusing largely on just the hypervariable segments of the control region. Next-generation sequencing technologies should enable studies of heteroplasmy across the entire mtDNA genome at much higher resolution, because many independent reads are generated for each position. However, the higher error rate associated with these technologies must be taken into consideration to avoid false detection of heteroplasmy. We used simulations and phiX174 sequence data to design criteria for accurate detection of heteroplasmy with the Illumina Genome Analyzer platform, and we used artificial mixtures and replicate data to test and refine the criteria. We then applied these criteria to mtDNA sequence reads for 131 individuals from five Eurasian populations that had been generated via a parallel tagged approach. We identified 37 heteroplasmies at 10% frequency or higher at 34 sites in 32 individuals. The mutational spectrum does not differ between heteroplasmic mutations and polymorphisms in the same individuals, but the relative mutation rate at heteroplasmic mutations is significantly higher than that estimated for all mutable sites in the human mtDNA genome. Moreover, there is also a significant excess of nonsynonymous mutations observed among heteroplasmies, compared to polymorphism data from the same individuals. Both mutation-drift and negative selection influence the fate of heteroplasmies to determine the polymorphism spectrum in humans. With appropriate criteria for avoiding false positives due to sequencing errors, next-generation technologies can provide novel insights into genome-wide aspects of mtDNA heteroplasmy.  相似文献   

16.
17.
Microsatellites (or SSRs: simple sequence repeats) are among the most frequently used DNA markers in many areas of research. The use of microsatellite markers is limited by the difficulties involved in their de novo isolation from species for which no genomic resources are available. We describe here a high-throughput method for isolating microsatellite markers based on coupling multiplex microsatellite enrichment and next-generation sequencing on 454 GS-FLX Titanium platforms. The procedure was calibrated on a model species (Apis mellifera) and validated on 13 other species from various taxonomic groups (animals, plants and fungi), including taxa for which severe difficulties were previously encountered using traditional methods. We obtained from 11,497 to 34,483 sequences depending on the species and the number of detected microsatellite loci ranged from 199 to 5791. We thus demonstrated that this procedure can be readily and successfully applied to a large variety of taxonomic groups, at much lower cost than would have been possible with traditional protocols. This method is expected to speed up the acquisition of high-quality genetic markers for nonmodel organisms.  相似文献   

18.
Ultra-deep sequencing (UDS) of amplicons is a major application for next-generation sequencing technologies, even more so for the 454 Genome Sequencer FLX. Especially for this application, errors that might be introduced during any of the sample processing or data analysis steps should be avoided or at least recognized, as they might lead to aberrant sequence variant calling. Since 454 pyrosequencing relies on PCR-driven target amplification, it is key to differentiate errors introduced during the amplification step from genuine minority variants. Thereto, optimal primer design is imperative because primer selection, primer dimer formation, and nonspecific binding may all affect the quality and outcome of amplicon-based deep sequencing. Also, other intrinsic PCR characteristics including amplification drift and the formation of secondary structures may influence sequencing data quality. We illustrate these phenomena using real life case studies and propose experimental and analytical evidence-based solutions for effective practice. Furthermore, because accuracy of the DNA polymerase is vital for reliable UDS results, a comparative analysis of error profiles from seven different DNA polymerases was performed and experimentally assessed in parallel by 454 sequencing. Finally, intra and interrun variability evaluation of the 454 sequencing protocol revealed highly reproducible results in amplicon-based UDS.  相似文献   

19.
20.
The advent of DNA sequencing has significantly accelerated molecular biology and clinical genetic testing. Despite recent increases in next-generation sequencing throughput, the most popular platform for DNA sequencing is still the multi-capillary DNA sequencer, which is ideally suited for small-scale sequencing projects and is highly accurate. However, the methods remain time-consuming and laborious. Here, I describe a modified ethylenediaminetetraacetic acid (EDTA) method that skips the washing step in ethanol precipitation. My improvements to standard methods save labor, time, and cost per run and increase the sequence reads by 5 to 10%. This modified method will provide immediate benefits to many researchers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号