首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chlorella sp. strain 3.83, a symbiotic Chlorella isolated from the heliozoan Acanthocystis turfacea, excreted between 8% and 16% of assimilated 14CO2 as maltose in the light (15000 lx), with a pH optimum around 4.8. This percentage increased when the illuminance was lowered (36% at 1700 lx). Release of [14C]maltose continued in darkness and could be inhibited by the uncoupler carbonyl cyanide p-trifluoro-methoxyphenylhydrazone and by diethylstilbestrol. Net efflux of maltose was observed even at a concentration ratio of extracellular/intracellular maltose of 7.8. Exogenous [14C]maltose (5 mM) was taken up by the cells with a rate <2% of that of simultaneous maltose release, indicating a practically unidirectional transport. It is concluded that maltose excretion is an active-transport process.Abbreviations DES diethylstilbestrol - FCCP carbonyl cyanide p-trifluoromethoxyphenyl hydrazone - p.c. packed cells This work was supported by the Deutsche Forschungsgemeinschaft. Thanks are due to Doris Meindl for skillful experimental help.  相似文献   

2.
The purpose of this study was to examine the sugar recognition and transport properties of the sucrose permease (CscB), a secondary active transporter from Escherichia coli. We tested the hypothesis that maltose transport is conferred by the wild-type CscB transporter. Cells of E. coli HS4006 harboring pSP72/cscB were red on maltose MacConkey agar indicator plates. We were able to measure “downhill” maltose transport and establish definitive kinetic behavior for maltose entry in such cells. Maltose was an effective competitor of sucrose transport in cells with CscB, suggesting that the respective maltose and sucrose binding sites and translocation pathways through the CscB channel overlap. Accumulation (“uphill” transport) of maltose by cells with CscB was profound, demonstrating active transport of maltose by CscB. Sequencing of cscB encoded on plasmid pSP72/cscB used in cells for transport studies indicate an unaltered primary CscB structure, ruling out the possibility that mutation conferred maltose transport by CscB. We conclude that maltose is a bona fide substrate for the sucrose permease of E. coli. Thus, future studies of sugar binding, transport, and permease structure should consider maltose, as well as sucrose. Yang Peng and Sanath Kumar contributed equally to this paper.  相似文献   

3.
InEnterobacteriaceae the nonphosphorylated form of IIAG1c of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) can inhibit the uptake and subsequent metabolism of glycerol and maltose by binding to, and inhibiting, glycerol kinase and the Ma1K protein of the maltose transport system, respectively. In this report we show that the IIAGlc-Iike domain of the membrane-bound IIN-acetylglucosamine (IINag) of the PTS can replace IIAGlc in aSalmonella typhimurium crr mutant strain that lacks all soluble IIAGlc. The inhibition was most severe in cells which were partially induced for the glycerol or maltose up take systems. TheStreptococcus thermophilus lactose transporter LacS, which also contains a IIAGlc-like domain, could not replace IIAGlc. Neither IINag nor LacS could replace IIAGlc in activation of adenylate cyclase.  相似文献   

4.
MalFGK2 is an ATP‐binding cassette (ABC) transporter that mediates the uptake of maltose/maltodextrins into Escherichia coli. A periplasmic maltose‐binding protein (MBP) delivers maltose to the transmembrane subunits (MalFG) and stimulates the ATPase activity of the cytoplasmic nucleotide‐binding subunits (MalK dimer). This MBP‐stimulated ATPase activity is independent of maltose for purified transporter in detergent micelles. However, when the transporter is reconstituted in membrane bilayers, only the liganded form of MBP efficiently stimulates its activity. To investigate the mechanism of maltose stimulation, electron paramagnetic resonance spectroscopy was used to study the interactions between the transporter and MBP in nanodiscs and in detergent. We found that full engagement of both lobes of maltose‐bound MBP unto MalFGK2 is facilitated by nucleotides and stabilizes a semi‐open MalK dimer. Maltose‐bound MBP promotes the transition to the semi‐open state of MalK when the transporter is in the membrane, whereas such regulation does not require maltose in detergent. We suggest that stabilization of the semi‐open MalK2 conformation by maltose‐bound MBP is key to the coupling of maltose transport to ATP hydrolysis in vivo, because it facilitates the progression of the MalK dimer from the open to the semi‐open conformation, from which it can proceed to hydrolyze ATP.  相似文献   

5.
The endosymbiotic Chlorella sp. from Paramecium bursaria excretes maltose both in the light and in the dark. Experiments on photosynthetic 14CO2 fixation and 14CO2 pulse-chase experiments show that maltose is synthesized in the light directly from compounds of the Calvin cycle, whereas in the dark it results from starch degradation.  相似文献   

6.
Circularly permuted green fluorescent protein (cGFP) was inserted into the hyperthermophilic maltose binding protein at two different locations. cGFP was inserted between amino acid residues 206 and 207, or fused to the N-terminal of maltose binding protein from Thermotoga maritima. The cloned DNA constructs were expressed in Escherichia coli cells, and purified by metal chelate affinity chromatography. Conformational change upon ligand binding was monitored by the increase in fluorescence intensity. Both of the fusion proteins developed significant fluorescence change at 0.5 mM maltose concentration, whereas their maltose binding affinities and optimum incubation times were different. Fluorescent biosensors based on mesophilic maltose binding proteins have been described in the literature, but there is a growing interest in biosensors based on thermostable proteins. Therefore, the developed protein constructs could be models for thermophilic protein-based fluorescent biosensors.  相似文献   

7.
Increasing free-energy conservation from the conversion of substrate into product is crucial for further development of many biotechnological processes. In theory, replacing the hydrolysis of disaccharides by a phosphorolytic cleavage reaction provides an opportunity to increase the ATP yield on the disaccharide. To test this concept, we first deleted the native maltose metabolism genes in Saccharomyces cerevisiae. The knockout strain showed no maltose-transport activity and a very low residual maltase activity (0.03 μmol mg protein−1 min−1). Expression of a maltose phosphorylase gene from Lactobacillus sanfranciscensis and the MAL11 maltose-transporter gene resulted in relatively slow growth (μaerobic 0.09±0.03 h−1). Co-expression of Lactococcus lactis β-phosphoglucomutase accelerated maltose utilization via this route (μaerobic 0.21±0.01 h−1, μanaerobic 0.10±0.00 h−1). Replacing maltose hydrolysis with phosphorolysis increased the anaerobic biomass yield on maltose in anaerobic maltose-limited chemostat cultures by 26%, thus demonstrating the potential of phosphorolysis to improve the free-energy conservation of disaccharide metabolism in industrial microorganisms.  相似文献   

8.
Cellular signaling involves a cascade of recognition events occurring in a complex environment with high concentrations of proteins, polysaccharides, and other macromolecules. The influence of macromolecular crowders on protein binding affinity through hard-core repulsion is well studied, and possible contributions of protein-crowder soft attraction have been implicated recently. Here we present direct evidence for weak association of maltose binding protein (MBP) with a polysaccharide crowder Ficoll, and that this association effectively competes with the binding of the natural ligand, maltose. Titration data over wide ranges of maltose and Ficoll concentrations fit well with a three-state competitive binding model. Broadening of MBP 115N TROSY spectra by the addition of Ficoll indicates weak protein-crowder association, and subsequent recovery of sharp NMR peaks upon addition of maltose indicates that the interactions of the crowder and the ligand with MBP are competitive. We hypothesize that, in the Escherichia coli periplasm, the competitive interactions of polysaccharides and maltose with MBP could allow MBP to shuttle between the peptidoglycan attached to the outer membrane and the ATP-binding cassette transporter in the inner membrane.  相似文献   

9.
The Escherichia coli maltose transporter MalFGK2‐E belongs to the protein superfamily of ATP‐binding cassette (ABC) transporters. This protein is composed of heterodimeric transmembrane domains (TMDs) MalF and MalG, and the homodimeric nucleotide‐binding domains (NBDs) MalK2. In addition to the TMDs and NBDs, the periplasmic maltose binding protein MalE captures maltose and shuttle it to the transporter. In this study, we performed all‐atom molecular dynamics (MD) simulations on the maltose transporter and found that both the binding of MalE to the periplasmic side of the TMDs and binding of ATP to the MalK2 are necessary to facilitate the conformational change from the inward‐facing state to the occluded state, in which MalK2 is completely dimerized. MalE binding suppressed the fluctuation of the TMDs and MalF periplasmic region (MalF‐P2), and thus prevented the incorrect arrangement of the MalF C‐terminal (TM8) helix. Without MalE binding, the MalF TM8 helix showed a tendency to intrude into the substrate translocation pathway, hindering the closure of the MalK2. This observation is consistent with previous mutagenesis experimental results on MalF and provides a new point of view regarding the understanding of the substrate translocation mechanism of the maltose transporter.  相似文献   

10.
The observed rate of phenylalanine absorption into rat intestinal rings with 0.5 or 5.0 mM phenylalanine is greater than that for absorption of phenylalanine from 0.25 or 2.5 mM Phe-Phe, respectively. With the amino acid phenylalanine, V for absorption is the same whether Na+ is present (149 mM) or absent, but the concentration at which the half-maximal transport rate occurred (Kt) is greater in the absence of Na+. For Phe-Phe, the V decreases in the absence of Na+ whilst Kt is not influenced by the Na+ concentration. The different effect of Na+ on Phe and Phe-Phe transport indicates that the absorptive mechanism for Phe-Phe is different from that for phenylalanine. Absorption of a mixture of [U-14C]Phe-Phe and Phe-[G-3H]Phe showed identical rates of uptake of the carboxyl and amino terminal amino acids.Studies of transport of radioactive maltose showed that the rates of uptake of the reducing and non-reducing glucosyl moieties are identical. Radioactive maltose absorption is not inhibited by glucose oxidase.These results provide evidence that in intestinal epithelium, hydrolysis of Phe-Phe and maltose does not occur on the cell surface with release of the hydrolyzed products to the medium. Rather, hydrolysis and release of the reaction products occur at a point on the cytosol side of a diffusion barrier located in the brush border membrane.  相似文献   

11.
In order to identify amino acid residues in the Escherichia coli raffinose-H+ permease (RafB) that play a role in sugar selection and transport, we first incubated E. coli HS4006 containing plasmid pRU600 (expresses inducible raffinose permease and α-galactosidase) on maltose MacConkey indicator plates overnight. Initially, all colonies were white, indicating no fermentation of maltose. Upon further incubation, 100 mutants appeared red. pRU600 DNA was prepared from 55 mutants. Five mutants transferred the phenotype for fermentation of maltose (red). Plasmid DNA from five maltose-positive phenotype transformants was prepared and sequenced, revealing three distinct types of mutations. Two mutants exhibited Val-35→Ala (MT1); one mutant had Ile-391→Ser (MT2); and two mutants had Ser-138→Asp, Ser-139→Leu and Gly-389→Ala (MT3). Transport studies of [3H]-maltose showed that cells harboring MT1, MT2 and MT3 had greater uptake (P ≤ 0.05) than cells harboring wild-type RafB. However, [14C]-raffinose uptake was reduced in all mutant cells (P ≤ 0.05) with MT1, MT2 and MT3 mutants compared to cells harboring wild-type RafB. Kinetic analysis showed enhanced apparent K m values for maltose and reduced V max/ K m ratios for raffinose compared to wild-type values. The apparent K i value of maltose for RafB indicates a competitive relationship between maltose and raffinose. Maltose “uphill” accumulation was greater for mutants (P ≤ 0.05) than for cells with wild-type RafB. Thus, we implicate residues in RafB that are responsible for raffinose transport and suggest that the substituted residues in RafB dictate structures that enhance transport of maltose.  相似文献   

12.
The utilization of maltose by Clostridium acetobutylicum ATCC 824 was investigated. Glucose was used preferentially to maltose, when both substrates were present in the medium. Maltose phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) activity was detected in extracts prepared from cultures grown on maltose, but not glucose or sucrose, as the sole carbon source. Extract fractionation and PTS reconstitution experiments revealed that the specificity for maltose is contained entirely within the membrane in this organism. A putative gene system for the maltose PTS was identified (from the C. acetobutylicum ATCC 824 genome sequence), encoding an enzyme IIMal and a maltose 6-phosphate hydrolase. Journal of Industrial Microbiology & Biotechnology (2001) 27, 298–306. Received 12 September 2000/ Accepted in revised form 30 November 2000  相似文献   

13.
为揭示碳源对早花百子莲愈伤组织诱导与增殖的影响机理,该研究以早花百子莲的小花梗为外植体,比较分析30.0 g/L蔗糖、葡萄糖、麦芽糖在愈伤组织诱导、增殖中的效果,测定不同碳源种类处理下愈伤组织增殖相关生理特性,并根据细胞增殖效果、生理指标相关性进行优化验证。结果表明:(1)蔗糖、葡萄糖和麦芽糖碳源处理下,愈伤组织诱导率分别为86.00%、72.00%和59.67%,蔗糖碳源的愈伤组织诱导率比葡萄糖和麦芽糖分别显著提高19.44%和44.13%(P<0.05),蔗糖碳源较葡萄糖和麦芽糖碳源的愈伤组织大小分别显著增加22.44%和90.09%(P<0.05);愈伤组织增殖阶段,蔗糖碳源能够同时维持良好的细胞增殖效率及活性,而葡萄糖碳源的愈伤组织增殖快、状态差,麦芽糖处理增殖慢、状态佳;蔗糖转换葡萄糖碳源后愈伤组织细胞团大小、细胞活性明显下降;蔗糖转换蔗糖、蔗糖转换麦芽糖的效果较好。(2)培养基碳源显著调节愈伤组织增殖阶段的糖代谢、内源激素代谢和氧化胁迫平衡。(3)愈伤组织的主要糖组分为淀粉、葡萄糖;淀粉、麦芽糖含量与细胞团大小相关性高,以蔗糖为碳源的培养基中添加麦芽糖,愈伤组织...  相似文献   

14.
The substrate specificity of pig liver acid α-glucosidase was investigated. The enzyme showed a wide specificity on various substrates. The Km values for maltose, malto-triose, -tetraose, -pentaose, -hexaose and -heptaose, and maltodextrin (mean degree of polymerization, 13) were 6.7 mm, 4.4 mm, 5.9 mm, ll mm, 4.0 mm, 5.6 mm and 7.1 mm, respectively. The relative maximum velocities for maltooligosaccharides consisting of three or more glucose units were 82.6 to 92.3% of the maximum velocity for maltose. For disaccharides, the rates of hydrolysis decreased in the following order: maltose > nigerose > kojibiose > isomaltose. The acid α-glucosidase also hydrolyzed several α-glucans, such as glycogen, soluble starch, β-limit dextrin and amylopectin. The Km value for β-limit dextrin was the lowest of those for α-glucans.

The nature of the active site catalyzing the hydrolyses of maltose and glycogen was investigated by kinetic methods. In experiments with mixed substrates, maltose and glycogen, the kinetic features agreed very closely with those theoretically predicted for a single active site catalyzing the hydrolyses of both substrates. Cations, Na+, K+ and Mg++, were about equally effective in the activation of the enzyme action on maltose and glycogen. The inhibitor constants of tris(hydroxymethyl)aminomethane (Tris) and turanose were nearly the same for maltase activity as those for glucoamylase activity. From these results, the enzyme was concluded to attack maltose and glycogen by a single active site mechanism.  相似文献   

15.
Thermostable trehalose synthase, which catalyzes the conversion of maltose into trehalose by intramolecular transglucosylation, was purified from a cell-free extract of the thermophilic bacterium Thermus aquaticus ATCC 33923 to an electrophoretically homogeneity by successive column chromatographies. The purified enzyme had a molecular weight of 105,000 by SDS-polyacrylamide gel electrophoresis and a pI of 4.6 by gel isoelectrofocusing. The N-terminal amino acid of the enzyme was methionine. The optimum pH and temperature were pH 6.5 and 65°C, respectively. The enzyme was stable from pH 5.5 to 9.5 and up to 80°C for 60min. The trehalose synthase from Thermus aquaticus is more thermoactive and thermostable than that from Pimelobacter sp. R48. The yield of trehalose from maltose by the enzyme was independent of the substrate concentration, and tended to increase at lower temperatures. The maximum yield of trehalose from maltose by the enzyme reached 80–82% at 30–40°C. The activity was inhibited by Cu2+ , Hg2+, Zn2+, and Tris.  相似文献   

16.
To achieve direct and efficient lactic acid production from starch, a genetically modified Lactococcus lactis IL 1403 secreting α-amylase, which was obtained from Streptococcus bovis 148, was constructed. Using this strain, the fermentation of soluble starch was achieved, although its rate was far from efficient (0.09 g l−1 h−1 lactate). High-performance liquid chromatography revealed that maltose accumulated during fermentation, and this was thought to lead to inefficient fermentation. To accelerate maltose consumption, starch fermentation was examined using L. lactis cells adapted to maltose instead of glucose. This led to a decrease in the amount of maltose accumulation in the culture, and, as a result, a more rapid fermentation was accomplished (1.31 g l−1 h−1 lactate). Maximum volumetric lactate productivity was further increased (1.57 g l−1 h−1 lactate) using cells adapted to starch, and a high yield of lactate (0.89 g of lactate per gram of consumed sugar) of high optical purity (99.2% of l-lactate) was achieved. In this study, we propose a new approach to lactate production by α-amylase-secreting L. lactis that allows efficient fermentation from starch using cells adapted to maltose or starch before fermentation.  相似文献   

17.
Summary Fermentation of maltose by Saccharomyces strains depends on the presence of any one of five unlinked MAL loci (MAL1, MAL2, MAL3, MAL4 or MAL6). Earlier mutational analyses of MAL2 and MAL6 containing strains have identified a single complementation group at each of these two loci. However complementation analysis between naturally occurring Mal Saccharomyces strains isolated from the wild demonstrated the presence of two complementation groups (designated MALp and MALg) at the MAL1, MAL3 and MAL6 loci. The available evidence suggests that the MALp gene is functionally equivalent to the complementation group identified by mutational analysis at the MAL6 locus and that this gene encodes a protein involved in the regulation of the coordinate induction of both maltase and maltose permease synthesis.In this paper we report the isolation, in a well characterized MAL1 strain, of 47 mutants unable to ferment maltose. All the mutants, with one exception, map at the MAL1 locus. These mal1 mutants, except for one, are recessive to MAL1 and fall into two major complementation groups. Evidence is presented that these two classes of mutants identify both a gene involved in the regulation of maltose fermentation (MAL1R) and a gene involved in maltose transport (MAL1T). We also report here the isolation of a temperature sensitive maltose nonfermenting mutant mapping at the MAL1 locus identifying a third gene (MAL1S) at this locus. The maltase synthesized by this mutant, when assayed in cell-free extracts, is significantly more thermolabile than the wild type enzyme. Our findings demonstrate that MAL1 is a complex locus comprising at least three genes: MAL1R, a gene involved in the coordinate regulation of the synthesis of maltase and maltose transport; MAL1T, a gene encoding a component of the maltose transport system; and MAL1S, a likely candidate for the structural gene for maltase.  相似文献   

18.
The protein design rules for engineering allosteric regulation are not well understood. A fundamental understanding of the determinants of ligand binding in an allosteric context could facilitate the design and construction of versatile protein switches and biosensors. Here, we conducted extensive in vitro and in vivo characterization of the effects of 285 unique point mutations at 15 residues in the maltose‐binding pocket of the maltose‐activated β‐lactamase MBP317‐347. MBP317‐347 is an allosteric enzyme formed by the insertion of TEM‐1 β‐lactamase into the E. coli maltose binding protein (MBP). We find that the maltose‐dependent resistance to ampicillin conferred to the cells by the MBP317‐347 switch gene (the switch phenotype) is very robust to mutations, with most mutations slightly improving the switch phenotype. We identified 15 mutations that improved switch performance from twofold to 22‐fold, primarily by decreasing the catalytic activity in the absence of maltose, perhaps by disrupting interactions that cause a small fraction of MBP in solution to exist in a partially closed state in the absence of maltose. Other notable mutations include K15D and K15H that increased maltose affinity 30‐fold and Y155K and Y155R that compromised switching by diminishing the ability of maltose to increase catalytic activity. The data also provided insights into normal MBP physiology, as select mutations at D14, W62, and F156 retained high maltose affinity but abolished the switch's ability to substitute for MBP in the transport of maltose into the cell. The results reveal the complex relationship between ligand binding and allostery in this engineered switch.  相似文献   

19.
In this study, the endocellulase gene from Monochamus saltuarius (MsGHF5) was transformed into Escherichia coli (RosettaBlue(DE3)pLysS strain), and induced by IPTG. The molecular weight of recombinant MsGHF5 (rMsGHF5) was 78 kDa and was expressed as a fusion protein with maltose binding protein in pMAL‐c2 expression vector. Native‐PAGE was conducted with 0.1% carboxymethyl cellulose as a substrate, and the zymogenic bands were observed. The Michaelis constant and maximum velocity of rMsGHF5 were 0.199 mg/mL and 0.034 μmol/min/mL, respectively. The optimal condition for rMsGHF5 occurred at pH 5 and 30°C. Fe2+ and Mn2+ stimulated the activity of rMsGHF5 by 167 and 114% respectively, whereas Cu2+, Hg2+ and Zn2+ inhibited its activity.  相似文献   

20.
The twin-arginine transport (Tat) system is a prokaryotic protein transport system. Escherichia coli mutants in this pathway show a defect in cell separation during cell division, resulting in destabilization and permeability of the outer membrane. Maltose uptake is catalysed by a membrane-bound transporter of the ATP binding cassette (ABC) superfamily, where MalE is the essential periplasmic binding protein component. Here, we report that tat mutants are unexpectedly able to transport maltose in the absence of malE. This observation is specific to the MalE component since co-inactivation of malF, which encodes one of the channel components of the transporter, completely abolishes maltose transport even when the Tat system is inactivated. Genetic repair of the outer membrane leaky phenotype of the tat mutant strain re-established the absolute requirement for MalE in maltose uptake. In addition, we demonstrate that phenotypic repair of the outer membrane defect of the tat strain can also be achieved chemically by the inclusion of high concentrations of calcium or magnesium in the growth medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号