首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nuclei from polyoma-infected 3T6 fibroblasts elongate in vitro the progeny strands of the replicative intermediates of polyoma DNA. When high concentrations of such nuclei were incubated, short DNA fragments were formed and subsequently added onto growing progeny strands. When nuclei were repeatedly washed with buffer containing detergent and then incubated at low concentrations. DNA synthesis was decreased. In particular, the joining process was reduced, resulting in an accumulation of short DNA fragments. All aspects of the synthetic capacity of the nuclei were restored by addition of cytoplasmic extract. Additions of purified enzymes (polynucleotide ligase from calf thymus or Escherichia coli together with E. coli DNA polymerase I) increased the joining function of the nuclei. The system can be used for the identification of the enzymatic steps concerned with polyoma DNA replication.  相似文献   

2.
Initiation of polyoma virus DNA replication is dependent on the activity of the early protein affected by the tsa mutations (large-T antigen). An in vitro DNA synthesizing system blocked at the initiation stage was designed by preparing nuclei from cells shifted to high temperature after infection with a polyoma tsa mutant. Addition to these nuclei of extracts from wild type virus-infected cells resulted in a limited, but reproducible stimulation of deoxynucleoside monophosphate incorporation. At least for a significant part, this stimulation was shown to correspond to an increased synthesis of molecules identified as polyoma replicative intermediates by their sedimentation coefficient and endonuclease Hpa II cleavage pattern. The non-random distribution of label observed among restriction fragments was that expected from an initiation event occuring at the physiological origin. This activity was reduced to background level in extracts from tsa-infected cells shifted to high temperature and was specifically inhibited by addition of Fab fragments from anti-polyoma virus T antigen immunoglobulins.  相似文献   

3.
Hydroxyurea treatment of 3T6 mouse fibroblast cells infected with polyoma virus resulted within 15 min in more than a 20-fold reduction of the rate of both viral and cellular DNA synthesis. After the initial rapid inhibition, the rate of DNA synthesis remained essentially constant for at least 2 h. In the inhibited cells viral DNA accumulated as short chains with a sedimentation coefficient of about 4S (hydroxyurea fragments). A variable proportion of these fragments was released from the template strands when the viral DNA was extracted by the Hirt procedure. Reannealing experiments demonstrated that hydroxyurea fragments were polyoma-specific and probably synthesized on both parental strands at the replication forks.  相似文献   

4.
The movement of replication forks during polyoma DNA synthesis in isolated nuclei was analyzed by digesting newly synthesized DNA with the restriction endonuclease HpaII which cleaves polyoma DNA into eight unique fragments. The terminus of in vitro DNA synthesis was identified by cleaving newly completed molecules with HpaII. The distribution of label in the restriction fragments showed that the in vitro DNA synthesis was bidirectional and had the normal terminus of replication. Analysis of replicative intermediates pulse-labeled in vitro further suggested that DNA synthesis in isolated nuclei is an ordered process similar to replication in intact cells. Replication forks moved with a constant rate from the origin towards the terminus of replication. The nonlinear course of the DNA synthesis reaction in the isolated nuclei seems to result from the random inactivation of replication forks rather than a decrease in the rate of fork movement. During the in vitro synthesis a replication fork could maximally synthesize a DNA chain about 1,000 nucleotides long. The results suggest that some replication forks might be initiated in vitro at the origin of replication.  相似文献   

5.
Isolated nuclei from adenovirus type 2-infected HeLa cells catalyze the incorporation of all four deoxyribonucleoside triphosphates into viral DNA. The observed DNA synthesis occurs via a transient formation of DNA fragments with a sedimentation coefficient of 10S. The fragments are precursors to unit-length viral DNA, they are self-complementary to an extent of at least 70%, and they are distributed along most of the viral chromosome. In addition, accumulation of 10S DNA fragments is observed either in intact, virus-infected HeLa cells under conditions where viral DNA synthesis is inhibited by hydroxyurea or in isolated nuclei from virus-infected HeLa cells at low concentrations of deoxyribonucleotides. Under these suboptimal conditions for DNA synthesis in isolated nuclei, ribonucleoside triphosphates determine the size distribution of DNA intermediates. The evidence presented suggests that a ribonucleoside-dependent initiation step as well at two DNA polymerase catalyzed reactions are involved in the discontinuous replication of adenovirus type 2 DNA.  相似文献   

6.
In vitro polyoma DNA synthesis: discontinuous chain growth   总被引:9,自引:0,他引:9  
Using an in vitro system for polyoma DNA synthesis from polyoma-infected mouse BALB/3T3 cells, we have shown that short pulses of radioactively labeled deoxynucleoside triphosphates are incorporated into viral replicative intermediates. Upon denaturation, the pulse-labeled replicative intermediates yield two size classes of growing DNA chains, namely a heterogeneous long class with S values up to unit viral DNA length (16 S) and a rather discrete short class of 5 S pieces. We have shown that these short fragments are involved as precursors in viral DNA chain elongation and that they can be chased into mature viral DNA. The fragments are found in replicative intermediates at all stages of replication and are therefore presumably not involved in specialized initiation or termination processes. Kinetic analysis of the appearance of radioactivity in short and long chains shows that initially approximately equal amounts are incorporated at a linear rate into the two classes. Subsequently, the rate of incorporation into long chains approximately doubles, while the amount of radioactivity in short chains reaches a plateau. This not only suggests that short chains are precursors to long chains, but that the synthesis of long chains occurs as a separate event and is not simply a result of joining of short fragments. Under the in vitro labeling conditions the time taken for radioactivity in short chains to reach a constant level can be used as a measure of the average lifetime of a 5 S piece. Our analysis indicates that there may be a considerable lag between the completion of a 5 S piece and its joining into longer DNA. Estimates of the self-annealing of the short chains showed approximately 20% self-complementarity. Thus, polyoma synthesis in vitro appears to proceed predominantly by a semi-discontinuous mechanism in which the nascent DNA on one side of the growing fork is elongated continuously, while on the other side of the fork DNA is synthesized discontinuously as 5 S fragments, which are subsequently joined. Both the short and the long chains are synthesized in the 5′ to 3′ direction.A fraction of the pulse-labeled material is found as free 3 to 5 S single-stranded DNA. These pieces are of both viral and cellular origin. A majority of them appear to be involved as precursors in DNA chain elongation.  相似文献   

7.
8.
9.
Nucleoprotein complexes containing both form 1 and replicative intermediates of polyoma DNA prepared from nuclei of virus-infected mouse fibroblasts retain a limited ability to elongate progeny strands of the replicative intermediates. Compared to isolated nuclei, both the rate and the extent of strand elongation is greatly decreased. The isolated complexes synthesize initiator RNA and start new Okazaki fragments, but are deficient in the joining of these fragments. Addition of small amounts of an extract from 16 hours old Drosophila embryos corrects the deficiencies. The stimulatory activity of the extract can be partially purified and has been separated into two fractions by chromatography on Sepharose 6B. With immunological techniques we demonstrate that the mouse DNA polymerase-α, tightly bound to the complexes, is responsible for DNA strand elongation.The Drosophila α-polymerase present in one of the two fractions purified on Sepharose 6B cannot substitute for the mouse enzyme. The stimulatory activity of the Drosophila fractions is thus not due to α-polymerase.  相似文献   

10.
Deoxyuridine triphosphate pools after polyoma virus infection   总被引:2,自引:0,他引:2  
The synthesis of polyoma DNA in virus-infected 3T6 mouse fibroblasts is discontinuous with the intermediate formation of short Okazaki fragments. Hydroxyurea, an inhibitor of the enzyme ribonucleotide reductase, inhibits polyoma DNA synthesis, as measured by incorporation of radioactive thymidine. In the inhibited state, almost all incorporation occurs into short fragments. We investigated to what extent formation of short DNA fragments might be the result of incorporation of deoxyuridine triphosphate (dUTP) into DNA, followed by excision and repair reactions. We devised a sensitive enzymatic method for measuring dUTP in cell extracts which allows the determination of the dUTP pool when this pool amounts to between 0.1 and 2% of the dTTP pool. No dUTP was detected in growing mouse fibroblasts. After infection with polyoma virus cell extracts contained 0.4% dUTP (of dTTP) at the peak of DNA synthesis. Addition of hydroxyurea at this point led to a disappearance of dUTP. We conclude that dUTP incorporation can contribute only minimally to the generation of short fragments during polyoma DNA synthesis.  相似文献   

11.
Polyoma virus minichromosomes: associated DNA molecules   总被引:6,自引:6,他引:0       下载免费PDF全文
Electron microscopy was used to identify and quantitate DNA molecules associated with 3H-labeled polyoma minichromosomes which had been fractionated on a sucrose gradient. The percentage of replicating DNA molecules observed in the fractions of the gradient normally designated the replicative intermediate region was up to ninefold higher than in fractions from the mature region. Nevertheless, because of the higher overall concentration of polyoma DNA molecules in the mature region, nearly as many replicating DNA molecules were computed to be in the mature region as in the replicative intermediate region. The replicating molecules in the mature region was predominantly early replicative intermediates. Almost all late replicative intermediates were found in the replicative intermediate region. Under aqueous spreading conditions, a substantial fraction of the replicating DNA structures appeared to be asymmetrical or otherwise unusual, suggesting that extensive single-stranded regions may exist in replicating polyoma minichromosomes.  相似文献   

12.
Short fragments of DNA (5 S) isolated by denaturation from polyoma replicative intermediates pulse-labeled in vitro were shown to have RNA covalently attached by three criteria: (1) such fragments were slightly denser than bulk viral DNA. (2) They could be labeled directly with α-32P-labeled ribotriphosphates. (3) Alkaline hydrolysis of fragments labeled with α-32P-labeled deoxynucleoside triphosphates showed 32P transfer to 3′ ribonucleoside monophosphates. Except for a preference of transfer from dC, the link showed little sequence specificity. The data are compatible with the notion that all short fragments in replicating viral DNA are initiated by an RNA primer. This RNA is maximally 30 bases long and is rather short-lived.  相似文献   

13.
DNA chain growing during semiconservative replication was studied using both in vitro systems described in the preceding paper (preceding paper, ref 1) 3H-Labeled, 4-S Okazaki fragments synthesized in vivo just prior to permeabilization or lysis with Brij-58 were metabolically stable and quantitatively chased into high molecular weight DNA (20--100 S) during a subsequent incubation in vitro. Thus, DNA replication continued in vitro at the same growing points that were active in vivo. After a 20-s pulse at 30 degress C in vitro, more than 50% of incorporated radioactivity was found in the 4 S region of alkaline sucrose gradients suggesting a totally discontinuous mode of DNA chain growth. If the pulse were followed by a 1-min chase, 4-S molecules were converted into 6--12-S intermediates which upon continued incubation were joined with growing 20--100-S molecules (replicon-sized chains). Formation of all three classes of replicative intermediates, Okazaki fragments, 6--12-S intermediates, and 20--100-S molecules, occurred in vitro at least during the first 20 min. During this time, average rates of DNA chain growth and overall DNA synthesis were reduced to about the same extent, if compared to rates of intact cells. Thus, reduced chain growth rates appear to reflect primary deficiences of our in vitro systems, while initiation of replicative intermediates still occurs.  相似文献   

14.
Summary The rate at which 3H thymidine is incorporated into DNA is increased in T4w-infected cells compared to wild-type when measured late in infection under conditions of low thymidine concentration. This increased DNA synthesis is sensitive to hydroxyurea but not to mitomycin C, and can be prevented by the addition of chloramphenicol early in infection. Also, DNA replicative intermediates isolated from T4w-infected cells late in infection sediment significantly faster than those isolated from wild-type-infected cells. In contrast, DNA replicative intermediates isolated from T4x-or T4y-infected cells sediment more slowly than those produced by wild-type T4. Cells coinfected with wild-type T4+ and T4x, y or w; or T4w and T4x or y, produce wild-type DNA replicative intermediates. Cells coinfected with T4x and T4y produce more slowly sedimenting DNA replicative intermediates. Cells coinfected with T4w and wild-type T4 show wild-type rates of DNA synthesis while cells coinfected with T4w and T4x or T4y show increased rates of DNA synthesis over that observed with wild-type alone.  相似文献   

15.
Intermediate in SV40 DNA Chain Growth   总被引:19,自引:0,他引:19  
PREVIOUS studies of the DNA replication of simian virus 40 (SV40), an oncogenic member of the papoyavirus group, have been concerned with separation and characterization of replicative intermediates1–4. Circular replicating intermediates have been identified for SV401–3, as well as for the similar replication system of polyoma viral DNA5,6. The replicative intermediates of SV40 DNA have been observed by electron microscopy to contain two forks, three branches and no free ends1–3 as is the case for the circular replicating molecules of polyoma, bacteriophage λ7, Escherichia coli8 and colicin E1 in mini-cells9,10. An important property of replicative intermediates of SV40 DNA that has also been observed in replicating molecules of colicin E110 is that most molecules contain a superhelical region in the unreplicated portion of the molecule1.  相似文献   

16.
Polyoma virus minichromosomes were isolated from infected 3T6 cells by hypotonic extraction of isolated nuclei. The kinetics of in vitro DNA synthesis in the nuclear extract was similar to that observed with intact nuclei. The majority of the products of in vitro DNA synthesis sedimented with replicative intermediate (RI) minichromosomes and migrated as two bands (RI-a and RI-b) on 1.4% agarose gels. The kinetics of deoxynucleotide monophosphate incorporation into these species was consistent with the existence of several rate-limiting steps in in vitro replication by polyoma minichromosomes. Electron microscope analysis showed that the RI-a band consisted almost entirely of RI theta structures ranging from 46 to 87% replicated, with one-half of all theta structures 67 +/- 4% replicated. The RI-b material was more complex, consisting of sigma and alpha structures with tails ranging from 7 to 114% of polyoma genome length and, less frequently, of linked and multiple linked dimeric structures.  相似文献   

17.
P Clertant  P Gaudray    F Cuzin 《The EMBO journal》1984,3(2):303-307
Nucleoprotein complexes extracted from the nuclei of mouse cells lytically infected with polyoma virus contain an ATPase activity which appears to correspond to that of the viral large T protein, as it exhibits the same characteristic properties; in particular, the activity is extensively inhibited by polyclonal antibodies from animals bearing polyoma tumors (anti-T antigen antibodies) and by monoclonal antibodies against large T. Significant amounts of DNA were immunoprecipitated by adding these antibodies to the nucleoprotein complex, suggesting that the protein is tightly bound to DNA in the viral chromatin. Since one of the monoclonal antibodies quantitatively immunoprecipitated the pulse-labeled replicative intermediates, we conclude that some large T protein remains physically associated with the DNA throughout its replication cycle. After exposure to salt concentrations higher than 1 M KCl, about half of the large T-specific ATPase activity was still observed to co-sediment with 21S form I viral DNA. The observations that the sedimentation coefficient of the salt-stable complexes was shifted to 16S after a limited endonucleolytic digestion, and that both the viral DNA and the ATPase activity were co-precipitated in the presence of polyethylene glycol at high ionic strength, further demonstrated that the protein is engaged in an unusually stable complex with DNA in the viral chromatin.  相似文献   

18.
K Brynolf  R Eliasson  P Reichard 《Cell》1978,13(3):573-580
When dUTP replaced dTTP during polyoma DNA replication in isolated cell nuclei, radioactivity from labeled deoxynucleoside triphosphates was almost exclusively recovered in very short Okazaki fragments and incorporation ceased after a short time. Addition of uracil, a known inhibitor of the enzyme uracil-DNA glycosidase (Lindahl et al., 1977), increased total synthesis and shifted the incorporation to longer progeny strands. The presence of as little as 2.5% of dUTP in a dTTP-containing system gave a distinct increase in isotope incorporation into Okazaki pieces accompanied by a corresponding decrease in longer strands. This effect was reversed completely by uracil. The short strands formed from dUTP could be chased efficiently into long strands. Our results suggest that dUTP can be incorporated in place of dTTP into polyoma DNA, and that polyoma-infected nuclei, similar to E. coli (Tye et al., 1977), contain an excision-repair system which by removal of uracil causes strand breakage and under certain circumstances may contribute to the formation of Okazaki fragments.  相似文献   

19.
The effect of purified SV40 T antigen on DNA synthesis in isolated nuclei from the confluent culture of CV-1 cells was studied. In the presence of T antigen the incorporation of [3H]TTP into DNA was found to be 2 to 3 times as high as in the control nuclei. The resulting labelled DNA was subjected to alkaline sucrose gradient centrifugation, which revealed the presence of 4S DNA species, corresponding to Okazaki fragments of animal cells. The latter finding suggests a replicative mode of DNA synthesis induced by T antigen. T antigen isolated from the cells infected with SV40 tsA-mutant and kept at a nonpermissive (41 degrees) temperature fails to stimulate DNA synthesis in isolated nuclei from resting cells. On storage at 4 degrees SV40 T antigen gradually loses its ability to stimulate DNA synthesis and by the 8th day even suppresses it when tested on isolated nuclei from a growing cell culture. No effect of T antigen on the endonuclease-induced reparative synthesis of DNA could be observed. The data described suggest that T antigen is directly involved in the control of DNA synthesis in the cells infected or transformed with SV40.  相似文献   

20.
Simian virus 40 DNA replication has been studied in nuclear monolayers prepared by treatment of monolayers of BSC-1 monkey kidney cells with Nonidet P-40. These nuclear monolayers incorporated [3H]TTP into two types of viral replicative intermediates that sediment as 25-26S and 22-23S species, respectively, in neutral sucrose gradients. The 22-23S species behaves, in dye buoyant density equilibrium gradients, as a late replicative intermediate. Examination of both species in alkaline sucrose gradients revealed the presence of two types of newly synthesized strands: (i) 4-7S strands and (ii) full-length, or nearly full-length, 10-16S strands. At low TTP concentrations (less than 0.5 muM), the two size classes were found in approximately equal amounts. However, at 10 to 50 muM TTP, the proportion of the longer strands increased, with a corresponding decrease in the relative amount of the 4-7S species. Thus, the joining of small, Okazaki-like fragments to the growing chain appears to require a much higher concentration of TTP than the synthesis of the fragments themselves. Replicating simian virus 40 DNA synthesized in the nuclear monolayers is is associated with "M bands", as previously demonstrated for replicating simian virus 40 DNA in cultured whole cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号