首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxygen mass transfer coefficient often serves to compare the efficiency of bioreactors and their mixing devices as well as being an important scale-up factor. In submerged fermentation, four methods are available to estimate the overall oxygen mass transfer coefficient (KLa): the dynamic method, the stationary method based on a previous determination of the oxygen uptake rate (QO2X), the gaseous oxygen balance and the carbon dioxide balance. Each method provides a distinct estimation of the value of KLa. Data reconciliation was used to obtain a more probable value of KLa during the production of Saccharomyces cerevisiae, performed in 22.5-l fed-batch bioreactor. The estimate of KLa is obtained by minimising an objective function that includes measurement terms and oxygen conservation models, each being weighted according to their level of confidence. Weighting factors of measurement terms were taken as their respective inverse variance whereas weighting factors of oxygen conservation models were obtained using Monte Carlo simulations. Results show that more coherent and precise estimations of KLa are obtained.  相似文献   

2.
We tested the hypothesis that hydraulic conductance per unit leaf surface area of plant shoots (KSL) determines the maximum diurnal stomatal conductance (gL) that can be reached by plants growing in the field. A second hypothesis was tested that some xylem cavitation cannot be avoided by transpiring plants and might act as a signal for regulating gL. Eleven woody species were studied, differing from each other with respect to taxonomy, wood anatomy and leaf habit. Maximum diurnal gL, transpiration rate (EL), pre-dawn and minimum diurnal leaf water potential (Opd and Omin, respectively) were measured in the field. The critical O level at which stem cavitation was triggered (Ocav) was measured on detached branches, using the acoustic method. A high-pressure flow meter was used to measure maximum KSL of 1-year-old shoots. Both gL and EL were positively related to KSL. The whole-plant hydraulic conductance per unit leaf area (KWL) of all the species studied, calculated as the ratio of EL to (O (=Opd-Omin) was closely related to KSL. In every case, Omin (ranging between -0.85 and -1.35 MPa in the different species) dropped to the Ocav range or was <Ocav (ranging between -0.71 and -1.23 MPa), thus suggesting that some cavitation-induced embolism could not be avoided. The possibility is discussed that some cavitation-induced reduction in KSL is the signal for stomatal closure preventing runaway embolism. The lack of correlation of gL to Ocav is discussed in terms of the inconsistency of Ocav as an indicator of the vulnerability of plants to cavitation. No differences in hydraulic traits were observed between evergreen and deciduous species.  相似文献   

3.
The influence of three well-known antifoaming agents (polypropylene glycol, silicone and soybean oil) on gas-liquid mass transfer in stirred tanks is studied, both in model and in fermentation media. The effect of antifoam concentration, ionic strength, viscosity, agitation speed and gas flow rate are investigated. It is found that antifoam addition at low concentrations markedly decreases the gas-liquid volumetric mass transfer coefficient, kLa, for the three antifoam agents tested. Although the major effect is on the film coefficient kL, some effect is also detected on the specific area, a. It is found that the influence of viscosity and antifoam addition are not cumulative: each tends to attenuate the other's effect on mass transfer. Both for silicone and for soybean oil, but not for PPG in the concentration range studied, there is an antifoam concentration above which further antifoam addition starts to improve kLa.  相似文献   

4.
This paper is concerned with the potential use of a reciprocating plate bioreactor (RPB) for suspended plant cell cultures. The agitation mechanism of the RPB system, a plate stack, was first evaluated in pure water and in pseudocells medium of 20, 40 and 60% of PCV. As the pseudocell concentration increases, the oxygen mass transfer coefficient, KLa, significantly decreases. Correlations were established for each plate stack and concentration with good prediction of KLa. Three fermentations were performed with Vitis vinifera cells, two in the RPB system and one in shake flasks. Shake flask cultures showed better performance whereas the first fermentation performed with the RPB showed the lowest performance. The lower growth observed was attributed to the operating conditions for aeration and the dissolved oxygen control strategy. CO2 stripping in the initial portion of the fermentation led to lower biomass growth. The second fermentation, with more appropriate operating conditions, appears to follow the trend of shake flask cultures but was terminated after 5 days due to contamination. The RPB has the potential to be used for suspended plant cell cultures but significant research needs to be performed to find optimal operating conditions but, more importantly, to make appropriate modifications to ensure the sterility of the bioreactor over long time periods.  相似文献   

5.
The oxygen transfer properties of a novel, centrifugal, packed-bed reactor (CPBR) during viscous xanthan fermentation were determined with respect to the effects of the arrangement of the centrifugal, packed bed (CPB) and the recirculation loop (RL). Characterized by the maximum volumetric transfer coefficient (kLa) in xanthan broth, the aeration efficiency of CPBR was compared to those in stirred-tank reactors (STR) equipped with disc turbines (DT) or marine propellers (MP), and to that in a water-in-oil emulsion (WIO). As expected, STR-WIO showed the highest kLa (0.038 s-1 at 2%) among all systems studied due to reduced broth viscosity; however, practical difficulties exist in product recovery. It was found that, at 3.5% xanthan the kLa in CPBR (0.018 s-1) was higher than that of STR (0.005 s-1) and close to that of STR-WIO (0.020 s-1), indicating improved oxygen transfer at such a xanthan concentration. The exterior baffles along the rotating fibrous matrix offer additional agitation in the viscous broth. A gas-continuous arrangement, in which the CPB was kept above the broth, was able to elevate kLa to 0.023 s-1, higher than that of STR-WIO. The external RL operated by a peristaltic pump was found to play an important role in CPBR aeration by providing better gas-liquid contact. With the improved oxygen transfer efficiency in CPBR at high xanthan concentrations, the CPBR system is practically the preferred system for xanthan fermentation. The characteristic roles of CPB arrangement and the RL should be considered primarily during scale-up operation.  相似文献   

6.
Conifers decrease the amount of biomass apportioned to leaves relative to sapwood in response to increasing atmospheric evaporative demand. We determined how these climate-driven shifts in allocation affect the aboveground water relations of ponderosa pine growing in contrasting arid (desert) and humid (montane) climates. To support higher transpiration rates, a low leaf:sapwood area ratio (AL/AS) in desert versus montane trees could increase leaf-specific hydraulic conductance (KL). Alternatively, a high sapwood volume:leaf area ratio in the desert environment may increase the contribution of stored water to transpiration. Transpiration and hydraulic conductance were determined by measuring sap flow (JS) and shoot water potential during the summer (June-July) and fall (August-September). The daily contribution of stored water to transpiration was determined using the lag between the beginning of transpiration from the crown at sunrise and JS. In the summer, mean maximum JS was 31.80LJ.74 and 24.34Dž.05 g m-2 s-1 for desert and montane trees (a 30.6% difference), respectively. In the fall, JS was 25.33NJ.52 and 16.36dž.64 g m-2 s-1 in desert and montane trees (a 54.8% difference), respectively. JS was significantly higher in desert relative to montane trees during summer and fall (P<0.05). Predawn and midday shoot water potential and sapwood relative water content did not differ between environments. Desert trees had a 129% higher KL than montane trees in the summer (2.41᎒-5 versus 1.05᎒-5 kg m-2 s-1 MPa-1, P<0.001) and a 162% higher KL in the fall (1.97᎒-5 versus 0.75᎒-5 kg m-2 s-1 MPa-1, P<0.001). Canopy conductance decreased with D in all trees at all measurement periods (P<0.05). Maximum gC was 3.91 times higher in desert relative to montane trees averaged over the summer and fall. Water storage capacity accounted for 11 kg (11%) and 10.6 kg (17%) of daily transpiration in the summer and fall, respectively, and did not differ between desert and montane trees. By preventing xylem tensions from reaching levels that cause xylem cavitation, high KL in desert ponderosa pine may facilitate its avoidance. Thus, the primary benefit of low leaf:sapwood allocation in progressively arid environments is to increase KL and not to increase the contribution of stored water to transpiration.  相似文献   

7.
Three impeller-sparger configurations were used to evaluate the effect of different hydrodynamic conditions over fungal growth in rheologically complex cultures of Trichoderma harzianum using castor oil as sole carbon source. Three spargers (ring, sintered and 5-orifice) in combination with a turbine impeller system "TIS" (two Rushton turbines) or a hybrid impeller system "HIS" (Rushton turbine and a marine propeller as lower and upper impellers) were used. Their performance was assessed in terms of the response towards disturbance (PID oxygen control settings) and oxygen mass transfer (kLa). To avoid oxygen limitations, all cultures were controlled at 10% DOT by gas blending. Top to bottom mixing, and hence bulk blending, was improved when the - axial flow - HIS was used, ensuring phase interaction and substrate (oil) circulation. The 5-orifice sparger in combination with the TIS configuration yielded the longest lag phase and lowest kLa due to poor bulk blending and to the low gas-liquid interfacial area developed. The highest kLa was achieved with the sintered sparger-HIS probably due to considerable interfacial bubble area enhancement. However, growth limitation occurred as consequence of poor substrate availability as a stable air-oil emulsion was formed at the top of the tank. The best compromise between bulk blending (phase interaction), oxygen transfer (kLa) and fungal growth (growth rate) was achieved with the ring sparger-HIS configuration.  相似文献   

8.
As part of our studies to examine the molecular basis of cold-adaptation, we have determined the kinetic properties, thermal stability and deduced amino acid sequence of the enzyme lactate dehydrogenase (LDH) from an Antarctic zoarcid fish, Lycodichthys dearborni. Unlike Antarctic notothenioid fish which are endemic to the Southern Ocean, zoarcid fish are cosmopolitan and have a substantially longer evolutionary history as a sub-order. The A4-LDH isoform was isolated and purified from the white muscle of L. dearborni. The kinetic parameters KmPYR and kcat were determined at temperatures from 0 to 25°C. KmPYR was substantially higher at low temperatures than those from Antarctic and temperate notothenioid fish, whereas kcat at these temperatures was essentially the same as those of the other fish LDH in this study. The sequence of L. dearborni A4-LDH was determined from cDNA derived from white muscle RNA and found to be similar to, but distinct from, the A4-LDH sequences of Antarctic notothenioid fish. Molecular modelling based on the structure of the A4-LDH from Pagothenia borchgrevinki suggested that three conservative amino acid changes within the core of the protein that are not directly part of the active site but which might nonetheless influence the active site, may be important in cold-adaptation in L. dearborni A4-LDH, and that several other changes on the surface of the protein might also play a role in cold-adaptation.  相似文献   

9.
A general relationship for prediction of the volumetric oxygen transfer coefficient (kLa) in a tower bioreactor utilizing immobilized Penicillium chrysogenum as function of air superficial velocity, suspension rheological parameters and liquid physical properties is proposed in this study. The relationship was applied to three different systems and a good agreement between the calculated values and the experimental data was obtained.  相似文献   

10.
The impact of regional factors (such as speciation or dispersal) on the species richness in local communities (SL) has received increasing attention. A prominent method to infer the impact of regional factors is the comparison of species richness in local assemblages (SL) with the total number of species in the region (SR). Linear relations between SR and SL have been interpreted as an indication of strong regional influence and weak influence of interactions within local communities. We propose that two aspects bias the outcome of such comparisons: (1) the spatial scale of local and regional sampling, and (2) the body size of the organisms. The impact of the local area reflects the scales of ecological interactions, whereas the ratio between local and regional area reflects the inherent moment of autocorrelation. A proposed impact of body size on the relation is based on the high dispersal and high abundance of small organisms. We predict strongest linearity between SR and SL for large organisms, for large local areas (less important ecological interactions) and for sampling designs where the local habitat area covers a high proportion of the regional area (more important autocorrelation). We conducted a meta-analysis on 63 relations obtained from the literature. As predicted, the linearity of the relationship between SL and SR increased with the proportion of local to regional sampling area. In contrast, neither the body size of the organisms nor the local area itself was significantly related to the relation between SL and SR. This indicated that ecological interactions played a minor role in the shape of local to regional richness plots, which instead was mainly influenced by the sampling design. We found that the studies published so far were highly biased towards larger organisms and towards high similarity between the local and regional area. The proposed prevalence of linear relationships may thus be an artefact and plots of SL to SR are not a suitable tool with which to infer the strength of local interactions.  相似文献   

11.
Dwarf mistletoes induce abnormal growth patterns and extreme changes in the biomass allocation of their hosts as well as directly parasitizing them for resources. Because biomass allocation can affect the resource use and efficiency of conifers, we studied the influences of dwarf mistletoe infection on above-ground biomass allocation of Douglas fir and western larch, and the consequences of such changes on whole-tree water use and water relations. Sap flow, tree water potentials, leaf:sapwood area ratios (AL:AS), leaf carbon isotope ratios, and nitrogen content were measured on Douglas fir and western larch trees with various degrees of mistletoe infection during the summer of 1996 in western Montana. Heavy dwarf mistletoe infection on Douglas fir and western larch was related to significant increases in AL:AS. Correspondingly, water transport dynamics were altered in infected trees, but responses were different for the two species. Higher AL:AS ratios in heavily infected Douglas firs were offset by increases in sapwood area-based sap flux densities (QSW) such that leaf area-based sap flux densities (QL) and predawn leaf water potentials at the end of the summer did not change significantly with mistletoe infection. Small (but statistically insignificant) decreases of QL for heavily infected Douglas firs were enough to offset increases in leaf area such that whole-tree water use was similar for uninfected and heavily infected trees. Increased AL:AS ratios of heavily infected western larch were not offset by increases of QSW. Consequently, QL was reduced, which corresponded with significant decreases of water potential at the end of the summer. Furthermore, mistletoe-infection-related changes in AL:AS as a function of tree size resulted in greater whole-tree water use for large infected larches than for large uninfected trees. Such changes may result in further depletion of limited soil water resources in mature infected stands late in the growing season. Foliage from infected trees of both species had lower water use efficiencies than non-infected trees. Our results demonstrate substantial changes of whole-tree processes related to mistletoe infection, and stress the importance of integrating whole-tree physiological and structural processes to fully understand the mechanisms by which pathogens suppress forest productivity.  相似文献   

12.
A torque meter has been developed for determining the power consumption in a bench stirred tank. The device has been bonded in the stirrer shaft inside a commercial bench fermentor, in order to avoid frictional losses in the mechanical seal. Power consumption measurements in ungassed and gassed systems were obtained at different agitation and aeration conditions, for Newtonian and non-Newtonian fluids. Also, a "simple modified sulfite method" for volumetric oxygen transfer coefficient (kLa) determination was developed and the experimental data were correlated with the gassed power (Pg) by using well-known correlations presented in the literature.  相似文献   

13.
Aiming to investigate whether a carbon-to-nitrogen equilibrium model describes resource allocation in lichens, net photosynthesis (NP), respiration (R), concentrations of nitrogen (N), chlorophyll (Chl), chitin and ergosterol were investigated in 75 different lichen associations collected in Antarctica, Arctic Canada, boreal Sweden, and temperate/subtropical forests of Tenerife, South Africa and Japan. The lichens had various morphologies and represented seven photobiont and 41 mycobiont genera. Chl a, chitin and ergosterol were used as indirect markers of photobiont activity, fungal biomass and fungal respiration, respectively. The lichens were divided into three groups according to photobiont: (1) species with green algae, (2) species with cyanobacteria, and (3) tripartite species with green algal photobionts and cyanobacteria in cephalodia. Across species, thallus N concentration ranged from 1 to 50 mg g-1 dry wt., NP varied 50-fold, and R 10-fold. In average, green algal lichens had the lowest, cyanobacterial Nostoc lichens the highest and tripartite lichens intermediate N concentrations. All three markers increased with thallus N concentration, and lichens with the highest Chl a and N concentrations had the highest rates of both P and R. Chl a alone accounted for ca. 30% of variation in NP and R across species. On average, the photosynthetic efficiency quotient [KF=(NPmax+R)/R)] ranged from 2.4 to 8.6, being higher in fruticose green algal lichens than in foliose Nostoc lichens. The former group invested more N in Chl a and this trait increased NPmax while decreasing R. In general terms, the investigated lichens invested N resources such that their maximal C input capacity matched their respiratory C demand around a similar (positive) equilibrium across species. However, it is not clear how this apparent optimisation of resource use is regulated in these symbiotic organisms.  相似文献   

14.
Shoot and leaf growth rate as well as shoot hydraulic conductance per unit leaf area (KSL) were measured on three evergreen (Viburnum tinus L., Prunus laurocerasus L., Laurus nobilis L.) and three deciduous (Corylus avellana L., Juglans regia L., Castanea sativa L.) trees growing under the same environmental conditions. The times required to complete shoot growth (27 days for P. laurocerasus to 51 days for V. tinus) and leaf expansion (24 days for C. sativa to 42 days for C. avellana) were very different among the studied species. These species also differed in KSL that ranged between 1.5 and 3.5 e-4 kg s-1 m-2 MPa-1 in C. avellana and C. sativa, respectively, with intermediate values recorded in the other species. A strong, negative and statistically significant correlation was found to exist between KSL and the time required for complete leaf expansion. This suggests that duration of leaf growth is shortened by the high hydraulic efficiency of the shoot. In contrast, no statistically significant relationship was found to exist between KSL and shoot growth rate. Whether a high leaf growth rate can be interpreted as advantageous to plants or it is only an epiphenomenon of the high efficiency in the vertical water transport is discussed.  相似文献   

15.
The mixing behaviour of the liquid phase in concentric-tube airlift bioreactors of different scale (RIMP: VL=0.070 m3; RIS-1: VL=2.50 m3; RIS-2: VL=5.20 m3) in terms of mixing time was investigated. This mixing parameter was determined from the output curves to an initial Dirac pulse, using the classical tracer response technique, and analyzed in relation to process and geometrical parameters, such as: gas superficial velocity, xSGR; top clearance, hS; bottom clearance, hB, and ratio of the resistances at downcomer entrance, Ad/AR. A correlation between the mixing time and the specified operating and geometrical parameters was developed, which was particularized for two flow regimes: bubbly and transition (xSGRА.08 m/s) and churn turbulent flow (xSGR> 0.08 m/s) respectively. The correlation was applied in bioreactors of different scale with a maximum error of ᆲ%.  相似文献   

16.
In the laboratory rock elephant shrews (Elephantulus myurus; mean body mass 56.6 g) displayed the lowest torpor Tb min yet recorded (ca. 5°C) in a placental daily heterotherm. It was unknown whether these low Tbs were characteristic of daily heterothermy in free-ranging animals. It was also unclear how cost effective these low Tbs were since considerable energy is required to arouse from low Tbs on a daily basis. We continuously measured body temperature once every hour for 85 days in 13 free-ranging E. myurus from May to August 2001 (winter) in Weenen Game Reserve, KwaZulu-Natal, South Africa. We recorded a total of 412 torpor bouts. Free-ranging E. myurus had a high propensity for torpor with females displaying higher torpor frequency than males. The lowest Tb recorded was 7.5°C at Ta=2.7°C and the minimum torpor Tb was strongly correlated with ambient temperature. Torpor arousal was tightly coupled with ambient temperature cycles. Low torpor Tb min at low Tas was therefore cost-effective because the animals offset the high cost of arousal through exogenous passive heating. Laboratory studies under constant ambient temperatures may therefore underestimate the energetic benefits of torpor in free-ranging small mammals that inhabit regions where seasonality is moderate.  相似文献   

17.
P. Singh 《Plant cell reports》2002,20(12):1188-1190
In order to investigate the possible role of Rht genes in the regulation of the redox condition of cytochrome a3 (cytochrome c oxidase) during steady-state respiration, wheat cultivars belonging to one of two groups - NP 710, NP 846 and NP 875 belonging to the tall group and Olesons dwarf, HD 1982 and HD 2122 of the dwarf group - and the reciprocal crosses between the varieties of these two groups were examined for carbon monoxide (CO) sensitivity in terms of the inhibition of mitochondrial electron transport. Leaves of young wheat seedlings were used. Differences in the redox state of cytochrome a3 were monitored using the in vivo aerobic assay of nitrate reduction after a 1-min exposure to CO. Dwarf cultivars possessing Rht genes responded marginally (᜖%) to CO inhibition, whereas the response of tall cultivars to CO was higher (51-70%). Since CO forms a complex only with reduced cytochrome a3, the results indicate differences in the redox state of cytochrome a3 during in situ respiration of leaves from tall and dwarf plants that are likely to be controlled by cytoplasmic factors.  相似文献   

18.
The effect of overall oxygen mass transfer coefficient (kLa) on the conversion of xylose to xylitol by Candida guilliermondii FTI 20037 was investigated in batch experiments. Rice straw hemicellulose hydrolysate obtained by acid hydrolysis was employed as a xylose-rich medium. The results showed that this bioconversion strongly depended on the aeration rate. The maximum volumetric productivity (0.52 g/l hу) and the highest xylitol yield (0.73 g/g) were achieved at an overall oxygen mass transfer coefficient of 15 hу. Under these conditions 80% efficiency in relation to theoretical yield was attained.  相似文献   

19.
The internal effectiveness factor of immobilized enzymes was analysed assuming the Michaelis-Menten kinetics to be valid. This factor can be analytically evaluated for cases where CsdKM or Cs€KM. When this kinetic equation is used in its original form, the effectiveness factor can be evaluated only using a numerical technique, such as the Runge-Kutta-Gill method. This method presents a 0/0 type undetermination when applied to the center of a cylindrical or spherical catalyst particle. The undetermination was eliminated here by using L'Hôpital's rule and an expression valid only for the center of the particle was developed.  相似文献   

20.
Physiological traits related to water transport were studied in Rhizophora mangle (red mangrove) growing in coastal and estuarine sites in Hawaii. The magnitude of xylem pressure potential (Px), the vulnerability of xylem to cavitation, the frequency of embolized vessels in situ, and the capacity of R. mangle to repair embolized vessels were evaluated with conventional and recently developed techniques. The osmotic potential of the interstitial soil water (?sw) surrounding the roots of R. mangle was c. -2.6LJ.52᎒-3 and -0.4Lj.13᎒-3 MPa in the coastal and estuarine sites, respectively. Midday covered (non-transpiring) leaf water potentials (OL) determined with a pressure chamber were 0.6-0.8 MPa more positive than those of exposed, freely-transpiring leaves, and osmotic potential of the xylem sap (?x) ranged from -0.1 to -0.3 MPa. Consequently, estimated midday values of Px (calculated by subtracting ?x from covered OL) were about 1 MPa more positive than OL determined on freely transpiring leaves. The differences in OL between covered and transpiring leaves were linearly related to the transpiration rates. The slope of this relationship was steeper for the coastal site, suggesting that the hydraulic resistance was larger in leaves of coastal R. mangle plants. This was confirmed by both hydraulic conductivity measurements on stem segments and high-pressure flowmeter studies made on excised leafy twigs. Based on two independent criteria, loss of hydraulic conductivity and proportions of gas- and liquid-filled vessels in cryo-scanning electron microscope (cryo-SEM) images, the xylem of R. mangle plants growing at the estuarine site was found to be more vulnerable to cavitation than that of plants growing at the coastal site. However, the cryo-SEM analyses suggested that cavitation occurred more readily in intact plants than in excised branches that were air-dried in the laboratory. Cryo-SEM analyses also revealed that, in both sites, the proportion of gas-filled vessels was 20-30% greater at midday than at dawn or during the late afternoon. Refilling of cavitated vessels thus occurred during the late afternoon when considerable tension was present in neighboring vessels. These results and results from pressure-volume relationships suggest that R. mangle adjusts hydraulic properties of the water-transport system, as well as the leaf osmotic potential, in concert with the environmental growing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号