首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O-linked N-acetylglucosaminylation (O-GlcNAc) is a regulatory post-translational modification of nucleo-cytoplasmic proteins that has a complex interplay with phosphorylation. O-GlcNAc has been described as a nutritional sensor, the level of UDP-GlcNAc that serves as a donor for the uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetyl-glucosaminyltransferase being regulated by the cellular fate of glucose. Because muscular contraction is both dependent on glucose metabolism and is highly regulated by phosphorylation/dephosphorylation processes, we decided to investigate the identification of O-GlcNAc-modified proteins in skeletal muscle using a proteomic approach. Fourteen proteins were identified as being O-GlcNAc modified. These proteins can be classified in three main classes: i) proteins implicated in the signal transduction and in the translocation between the cytoplasm and the nucleus or structural proteins, ii) proteins of the glycolytic pathway and energetic metabolism, and iii) contractile proteins (myosin heavy chain). A decrease in the O-GlcNAc level was measured in the slow postural soleus muscle after 14-day hindlimb unloading, a model of functional atrophy characterized by a decrease in the force of contraction. These results strongly suggest that O-GlcNAc modification may serve as an important regulation system in skeletal muscle physiology.  相似文献   

2.
A proteomic analysis was performed comparing normal rat soleus muscle to soleus muscle that had undergone either 0.5, 1, 2, 4, 7, 10 and 14 days of hindlimb suspension-induced atrophy or hindlimb suspension-induced atrophied soleus muscle that had undergone 1 hour, 8 hour, 1 day, 2 day, 4 day and 7 days of reweighting-induced hypertrophy. Muscle mass measurements demonstrated continual loss of soleus mass occurred throughout the 21 days of hindlimb suspension; following reweighting, atrophied soleus muscle mass increased dramatically between 8 hours and 1 day post reweighting. Proteomic analysis of normal and atrophied soleus muscle demonstrated statistically significant changes in the relative levels of 29 soleus proteins. Reweighting following atrophy demonstrated statistically significant changes in the relative levels of 15 soleus proteins. Protein identification using mass spectrometry was attempted for all differentially regulated proteins from both atrophied and hypertrophied soleus muscle. Five differentially regulated proteins from the hindlimb suspended atrophied soleus muscle were identified while five proteins were identified in the reweighting-induced hypertrophied soleus muscles. The identified proteins could be generally grouped together as metabolic proteins, chaperone proteins and contractile apparatus proteins. Together these data demonstrate that coordinated temporally regulated changes in the skeletal muscle proteome occur during disuse-induced soleus muscle atrophy and reweighting hypertrophy.  相似文献   

3.
Biomechanical unloading of the rat soleus by hindlimb unweighting is known to induce atrophy and a slow- to fast-twitch transition of skeletal muscle contractile properties, particularly in slow-twitch muscles such as the soleus. The purpose of this study was to determine whether the expression of the dihydropyridine (DHP) receptor gene is upregulated in unloaded slow-twitch soleus muscles. A rat DHP receptor cDNA was isolated by screening a random-primed cDNA lambda gt10 library from denervated rat skeletal muscle with oligonucleotide probes complementary to the coding region of the rabbit DHP receptor cDNA. Muscle mass and DHP receptor mRNA expression were assessed 1, 4, 7, 14, and 28 days after hindlimb unweighting in rats by tail suspension. Isometric twitch contraction times of soleus muscles were measured at 28 days of unweighting. Northern blot analysis showed that tissue distribution of DHP receptor mRNA was specific for skeletal muscle and expression was 200% greater in control fast-twitch extensor digitorum longus (EDL) than in control soleus muscles. A significant stimulation (80%) in receptor message of the soleus was induced as early as 24 h of unloading without changes in muscle mass. Unloading for 28 days induced marked atrophy (control = 133 +/- 3 vs. unweighted = 62.4 +/- 1.8 mg), and expression of the DHP receptor mRNA in the soleus was indistinguishable from levels normally expressed in EDL muscles. These changes in mRNA expression are in the same direction as the 37% reduction in time to peak tension and 28% decrease in half-relaxation time 28 days after unweighting. Our results suggest that muscle loading necessary for weight support modulates the expression of the DHP receptor gene in the soleus muscle.  相似文献   

4.
O-Linked N-acetylglucosaminylation termed O-GlcNAc is a dynamic cytosolic and nuclear glycosylation that is dependent both on glucose flow through the hexosamine biosynthesis pathway and on phosphorylation because of the existence of a balance between phosphorylation and O-GlcNAc. This glycosylation is a ubiquitous post-translational modification, which probably plays an important role in many aspects of protein functions. We have previously reported that, in skeletal muscle, proteins of the glycolytic pathway, energetic metabolism, and contractile proteins were O-GlcNAc-modified and that O-Glc-NAc variations could control the muscle protein homeostasis and be implicated in the regulation of muscular atrophy. In this paper, we report O-N-acetylglucosaminylation of a number of key contractile proteins (i.e. myosin heavy and light chains and actin), which suggests that this glycosylation could be involved in skeletal muscle contraction. Moreover, our results showed that incubation of skeletal muscle skinned fibers in N-acetyl-d-glucosamine, in a concentration solution known to inhibit O-GlcNAc-dependent interactions, induced a decrease in calcium sensitivity and affinity of muscular fibers, whereas the cooperativity of the thin filament proteins was not modified. Thus, our results suggest that O-GlcNAc is involved in contractile protein interactions and could thereby modulate muscle contraction.  相似文献   

5.
Disuse can induce numerous adaptive alterations in skeletal muscle. In the present study the effects of hindlimb unloading on muscle mass and biochemical responses were examined and compared in adult (450 g) and juvenile (200 g) rats after 1, 7, or 14 days of whole body suspension. Quantitatively and qualitatively the soleus (S), gastrocnemius (G), plantaris (P), and extensor digitorum longus (EDL) muscles of the hindlimb exhibited a differential sensitivity to suspension and weightlessness unloading in both adults and juveniles. The red slow-twitch soleus exhibited the most pronounced atrophy under both conditions, with juvenile responses being greater than adult. In contrast, the fast-twitch EDL hypertrophied during suspension and atrophied during weightlessness, with no significant difference between adults and juveniles. Determination of biochemical parameters (total protein, RNA, and DNA) indicated a less rapid rate of response in adult muscles. This was corroborated by assessment of muscle alpha-actin mRNA levels, which indicated a rapid (within 1 day) and significant (P less than 0.05) effect in juveniles but not in adults. The results of this investigation indicate 1) a qualitatively similar differential effect of unloading on muscles of adults and juveniles, 2) a quantitatively reduced and less rapid effect of suspension on adult muscles, and 3) a close similarity of adult and juvenile muscle responses during suspension and spaceflight, suggesting that this ground-based model simulates many of the unloading effects of weightlessness.  相似文献   

6.
Unloading of skeletal muscles by hindlimb unweighting is known to induce muscle atrophy and a shift toward faster contractile properties associated with an increase in the expression of fast contractile proteins, particularly in slow soleus muscles. Contractile properties suggest that slow soleus muscles acquire SR properties close to those of a faster one. We studied the expression and properties of the sarcoplasmic reticulum calcium release (RyR) channels in soleus and gastrocnemius muscles of rats submitted to hindlimb unloading (HU). An increase in RyR1 and a slight decrease in RyR3 expression was detected in atrophied soleus muscles only after 4 weeks of HU. No variation appeared in fast muscles. [(3)H]Ryanodine binding experiments showed that HU neither increased the affinity of the receptors for [(3)H]ryanodine nor changed the caffeine sensitivity of [(3)H]ryanodine binding. Our results suggested that not only RyR1 but also RyR3 expression can be regulated by muscle activity and innervation in soleus muscle. The changes in the RyR expression in slow fibers suggested a transformation of the SR from a slow to a fast phenotype.  相似文献   

7.
In the rat, denervation and hindlimb unloading are two commonly employed models used to study skeletal muscle atrophy. In these models, muscle atrophy is generally produced by a decrease in protein synthesis and an increase in protein degradation. The decrease in protein synthesis has been suggested to occur by an inhibition at the level of protein translation. To better characterize the regulation of protein translation, we investigated the changes that occur in various translation initiation and elongation factors. We demonstrated that both hindlimb unloading and denervation produce alterations in the phosphorylation and/or total amount of the 70-kDa ribosomal S6 kinase, eukaryotic initiation factor 2 alpha-subunit, and eukaryotic elongation factor 2. Our findings indicate that the regulation of these protein translation factors differs between the models of atrophy studied and between the muscles evaluated (e.g., soleus vs. extensor digitorum longus).  相似文献   

8.
It is well known that unloading of skeletal muscle with spaceflight or tail suspension leads rat soleus muscle atrophy. Previously, we reported that one of small heat shock protein (sHSP), alpha B-crystallin shows an early dramatic decrease in atrophied rat soleus muscle (Atomi et al, 1991). In this report, we focused to study the gravitational responses of another HSP, which may be reactive to the gravity. HSP47, a collagen-specific stress protein, has been postulated to be a collagen-specific molecular chaperone localized in the ER (Nagata et al, 1992). Western blot analysis revealed that HSP47 in slow skeletal muscle decreases at 5 days after tail suspension (TS) and increased at 5 days recovery after 10 days of TS as compared with the control level. Hypothetically, HSP47 in slow soleus muscle increases at 5 days after hypergravity (HG) induced by the centrifugation. The content of HSP47 in soleus muscle was strongly affected by gravity conditions.  相似文献   

9.
The present study involved a global analysis of genes whose expression was modified in rat soleus muscle atrophied after hindlimb suspension (HS). HS muscle unloading is a common model for muscle disuse that especially affects antigravity slow-twitch muscles such as the soleus muscle. A cDNA cloning strategy, based on suppression subtractive hybridization technology, led to the construction of two normalized soleus muscle cDNA libraries that were subtracted in opposite directions, i.e., atrophied soleus muscle cDNAs subtracted by control cDNAs and vice versa. Differential screening of the two libraries revealed 34 genes with altered expression in HS soleus muscle, including 11 novel cDNAs, in addition to the 2X and 2B myosin heavy chain genes expressed only in soleus muscles after HS. Gene up- and down-regulations were quantified by reverse Northern blot and classical Northern blot analysis. The 25 genes with known functions fell into seven important functional categories. The homogeneity of gene alterations within each category gave several clues for unraveling the interplay of cellular events implied in the muscle atrophy phenotype. In particular, our results indicate that modulations in slow- and fast-twitch-muscle component balance, the protein synthesis/secretion pathway, and the extracellular matrix/cytoskeleton axis are likely to be key molecular mechanisms of muscle atrophy. In addition, the cloning of novel cDNAs underlined the efficiency of the chosen technical approach and gave novel possibilities to further decipher the molecular mechanisms of muscle atrophy.  相似文献   

10.
The effect of long-term hindlimb unloading (2 or 5 week) on the expression of uncoupling protein-3 (UCP3) gene was investigated in rat skeletal muscles. The interaction of hindlimb unloading and thyroid status was also investigated at 2 weeks. Whatever the duration, mechanical unloading induced a similar increase in UCP3 mRNA relative abundance in the slow-twitch soleus (SOL) muscle (+80%, P < 0.05), whereas no effect was observed in the fast-twitch extensor digitorum longus (EDL) muscle. Hypothyroidism down-regulated while hyperthyroidism up-regulated UCP3 mRNA relative abundance in both SOL and EDL muscles, but thyroid status did not prevent the up-regulation of UCP3 induced by 2 weeks of suspension. These data therefore indicate for the first time that long-term hindlimb unloading up-regulates muscle UCP3 gene expression in a muscle-specific manner which is independent of thyroid status.  相似文献   

11.
Alterations in muscle play an important role in common diseases and conditions. Reactive oxygen species (ROS) are generated during hindlimb unloading due, at least in part, to the activation of xanthine oxidase (XO). The major aim of this study was to determine the mechanism by which XO activation causes unloading-induced muscle atrophy in rats, and its possible prevention by allopurinol, a well-known inhibitor of this enzyme. For this purpose we studied one of the main redox sensitive signalling cascades involved in skeletal muscle atrophy i.e. p38 MAPKinase, and the expression of two well known muscle specific E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFbx; also known as atrogin-1) and Muscle RING (Really Interesting New Gene) Finger-1 (MuRF-1). We found that hindlimb unloading induced a significant increase in XO activity and in the protein expression of the antioxidant enzymes CuZnSOD and Catalase in skeletal muscle. The most relevant new fact reported in this paper is that inhibition of XO with allopurinol, a drug widely used in clinical practice, prevents soleus muscle atrophy by ∼20% after hindlimb unloading. This was associated with the inhibition of the p38 MAPK-MAFbx pathway. Our data suggest that XO was involved in the loss of muscle mass via the activation of the p38MAPK-MAFbx pathway in unloaded muscle atrophy. Thus, allopurinol may have clinical benefits to combat skeletal muscle atrophy in bedridden, astronauts, sarcopenic, and cachexic patients.  相似文献   

12.
13.
Skeletal muscle disuse with space-flight and ground-based models (e.g., hindlimb unloading) results in dramatic skeletal muscle atrophy and weakness. Pathological conditions that cause muscle wasting (i.e., heart failure, muscular dystrophy, sepsis, COPD, cancer) are characterized by elevated "oxidative stress," where antioxidant defenses are overwhelmed by oxidant production. However, the existence, cellular mechanisms, and ramifications of oxidative stress in skeletal muscle subjected to hindlimb unloading are poorly understood. Thus we examined the effects of hindlimb unloading on hindlimb muscle antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione peroxidase), nonenzymatic antioxidant scavenging capacity (ASC), total hydroperoxides, and dichlorohydrofluorescein diacetate (DCFH-DA) oxidation, a direct indicator of oxidative stress. Twelve 6 month old Sprague Dawley rats were divided into two groups: 28 d of hindlimb unloading (n = 6) and controls (n = 6). Hindlimb unloading resulted in a small decrease in Mn-superoxide dismutase activity (10.1%) in the soleus muscle, while Cu,Zn-superoxide dismutase increased 71.2%. In contrast, catalase and glutathione peroxidase, antioxidant enzymes that remove hydroperoxides, were significantly reduced in the soleus with hindlimb unloading by 54.5 and 16.1%, respectively. Hindlimb unloading also significantly reduced ASC. Hindlimb unloading increased soleus lipid hydroperoxide levels by 21.6% and hindlimb muscle DCFH-DA oxidation by 162.1%. These results indicate that hindlimb unloading results in a disruption of antioxidant status, elevation of hydroperoxides, and an increase in oxidative stress.  相似文献   

14.
Female rats(7-8 mo old, n = 40) wererandomly placed into the intact control (Int) and ovariectomizedcontrol (Ovx) groups. Two weeks after ovariectomy, animals were furtherdivided into intact 2-wk hindlimb unloaded (Int-HU) and ovariectomizedhindlimb unloaded (Ovx-HU). We hypothesized that there would be greater hindlimb unloading-related atrophy in Ovx than in Int rats. In situcontractile tests were performed on soleus (Sol), plantaris (Plan),peroneus longus (Per), and extensor digitorum longus (EDL) muscles.Body weight and Sol mass were ~22% larger in Ovx than in Int groupand ~18% smaller in both HU groups than in Int rats (Ovx × HUinteraction, P < 0.05), and therewas a similar trend in Plan muscle (P < 0.07). There were main effects (P < 0.05) for both ovariectomy (growth) and hindlimb unloading(atrophy) on gastrocnemius mass. Mass of the Per and EDL muscles wasunaffected by either ovariectomy or hindlimb unloading. Time to peaktwitch tension for EDL and one-half relaxation times for Sol, Plan,Per, and EDL muscles were faster (P < 0.05) in Ovx than in Int animals. The results suggest that1) ovariectomy led to similarincreases of ~20% in body weight and plantar flexor mass;2) hindlimb unloading may haveprevented ovariectomy-related muscle growth;3) greater atrophy may have occurredin Sol and Plan of Ovx animals compared with controls; and4) removal of ovarian hormonalinfluence decreased skeletal muscle contraction times.

  相似文献   

15.
In experiments on neuromuscular synapses of rat fast (m. Extensor digitorum longus, EDL) and slow (m. soleus) skeletal muscles, changes in the intensity of spontaneous quantal mediator secretion in response to the activation of presynaptic cholinoreceptors by the nonhydrolyzable acetylcholine analogue carbachol and to an increase in K+ concentration in the control group of animals and in animals subjected to different terms of unloading of hindlimbs have been compared. The intensity of spontaneous secretion of mediator quanta was evaluated from the mean frequency of miniature endplate potentials. In the control group of animals, the frequency of miniature endplate potentials by the action of carbachol increased by 363% in m. EDL and by 62% in m. soleus. The frequency of miniature endplate potentials in the synapses of m. EDL was more sensitive to K(+)-induced depolarization too. The bearing unloading of hindlimbs abolished the sensitivity of spontaneous secretion to carbachol in the synapses of m. EDL, whereas in m. soleus it was unchanged. However, the preservation of sensitivity of nerve endings of fast muscle to K(+)-induced depolarization allows one to assume that the hindlimb unloading leads to a decrease in the number of functioning presynaptic receptors.  相似文献   

16.

[Purpose]

αB-crystallin is a small heat shock protein that acts as a molecular chaperone under various stress conditions. Microtubules, which consist of tubulin, are related to maintain the intracellular organelles and cellular morphology. These two proteins have been shown to be related to the properties of different types of myofibers based on their contractile properties. The response of these proteins during muscular atrophy, which induces a myofibril component change, is not clearly understood.

[Methods]

We performed 15 days of hindlimb unloading on rats to investigate the transitions of these proteins by analyzing their absolute quantities. Protein contents were analyzed in the soleus, plantaris, and gastrocnemius muscles of the unloading and control groups (N = 6).

[Results]

All three muscles were significantly atrophied by hindlimb unloading (P < 0.01): soleus (47.5%), plantaris (16.3%), and gastrocnemius (21.3%) compared to each control group. αB-crystallin was significantly reduced in all three examined unloaded hindlimb muscles compared to controls (P < 0.01) during the transition of the myosin heavy chain to fast twitch muscles. α-Tubulin responded only in the unloaded soleus muscle. Muscle atrophy induced the reduction of αB-crystallin and α-tubulin expressions in plantar flexor muscles with a shift to the fast muscle fiber compared to the control.

[Conclusion]

The novel finding of this study is that both proteins, αB-crystallin and α-tubulin, were downregulated in slow muscles (P < 0.01); However, α-tubulin was not significantly reduced compared to the control in fast muscles (P < 0.01).  相似文献   

17.
Unloading in spaceflight or long-term bed rest induces to pronounced atrophy of anti-gravity skeletal muscles. Passive stretch partially resists unloading-induced atrophy of skeletal muscle, but the mechanism remains elusive. The aims of this study were to investigate the hypotheses that stretch tension might increase protein level of neuronal nitric oxide synthase (nNOS) in unloaded skeletal muscle, and then nNOS-derived NO alleviated atrophy of skeletal muscle by inhibiting calpain activity. The tail-suspended rats were used to unload rat hindlimbs for 2 weeks, at the same time, left soleus muscle was stretched by applying a plaster cast to fix the ankle at 35° dorsiflexion. Stretch partially resisted atrophy and inhibited the decreased protein level and activity of nNOS in unloaded soleus muscles. Unloading increased frequency of calcium sparks and elevated intracellular resting and caffeine-induced Ca(2+) concentration ([Ca(2+)]i) in unloaded soleus muscle fibers. Stretch reduced frequency of calcium sparks and restored intracellular resting and caffeine-induced Ca(2+) concentration to control levels in unloaded soleus muscle fibers. The increased protein level and activity of calpain as well as the higher degradation of desmin induced by unloading were inhibited by stretch in soleus muscles. In conclusion, these results suggest that stretch can preserve the stability of sarcoplasmic reticulum Ca(2+) release channels which prevents the elevated [Ca(2+)]i by means of keeping nNOS activity, and then the enhanced protein level and activity of calpain return to control levels in unloaded soleus muscles. Therefore, stretch can resist in part atrophy of unloaded soleus muscles.  相似文献   

18.
O-N-acetylglucosaminylation is a reversible post-translational modification which presents a dynamic and highly regulated interplay with phosphorylation. New insights suggest that O-GlcNAcylation might be involved in striated muscle physiology, in particular in contractile properties such as the calcium activation parameters. By the inhibition of O-GlcNAcase, we investigated the effect of the increase of soleus O-GlcNAcylation level on the contractile properties by establishing T/pCa relationships. We increased the O-GlcNAcylation level on soleus biopsies performing an organ culture of soleus treated or not with PUGNAc or Thiamet-G, two O-GlcNAcase inhibitors. The enhancement of O-GlcNAcylation pattern was associated with an increase of calcium affinity on slow soleus skinned fibers. Analysis of the glycoproteins pattern showed that this effect is solely due to O-GlcNAcylation of proteins extracted from skinned biopsies. We also characterized the O-GlcNAcylated contractile proteins using a proteomic approach, and identified among others troponin T and I as being O-GlcNAc modified. We quantified the variation of O-GlcNAc level on all these identified proteins, and showed that several regulatory contractile proteins, predominantly fast isoforms, presented a drastic increase in their O-GlcNAc level. Since the only slow isoform of contractile protein presenting an increase of O-GlcNAc level was MLC2, the effect of enhanced O-GlcNAcylation pattern on calcium activation parameters could involve the O-GlcNAcylation of sMLC2, without excluding that an unidentified O-GlcNAc proteins, such as TnC, could be potentially involved in this mechanism. All these data strongly linked O-GlcNAcylation to the modulation of contractile activity of skeletal muscle.  相似文献   

19.
Pleiotrophin (PTN) is a widespread cytokine involved in bone formation, neurite outgrowth, and angiogenesis. In skeletal muscle, PTN is upregulated during myogenesis, post-synaptic induction, and regeneration after crushing, but little is known regarding its effects on muscle function. Here, we describe the effects of PTN on the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles in mice over-expressing PTN under the control of a bone promoter. The mice were maintained in normal loading or disuse condition, induced by hindlimb unloading (HU) for 14 days. Effects of exposition to near-zero gravity during a 3-months spaceflight (SF) into the Mice Drawer System are also reported. In normal loading, PTN overexpression had no effect on muscle fiber cross-sectional area, but shifted soleus muscle toward a slower phenotype, as shown by an increased number of oxidative type 1 fibers, and increased gene expression of cytochrome c oxidase subunit IV and citrate synthase. The cytokine increased soleus and EDL capillary-to-fiber ratio. PTN overexpression did not prevent soleus muscle atrophy, slow-to-fast transition, and capillary regression induced by SF and HU. Nevertheless, PTN exerted various effects on sarcolemma ion channel expression/function and resting cytosolic Ca2+ concentration in soleus and EDL muscles, in normal loading and after HU. In conclusion, the results show very similar effects of HU and SF on mouse soleus muscle, including activation of specific gene programs. The EDL muscle is able to counterbalance this latter, probably by activating compensatory mechanisms. The numerous effects of PTN on muscle gene expression and functional parameters demonstrate the sensitivity of muscle fibers to the cytokine. Although little benefit was found in HU muscle disuse, PTN may emerge useful in various muscle diseases, because it exerts synergetic actions on muscle fibers and vessels, which could enforce oxidative metabolism and ameliorate muscle performance.  相似文献   

20.
Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats.   总被引:7,自引:0,他引:7  
This study tested the hypothesis that elevation of heat stress proteins by whole body hyperthermia is associated with a decrease in skeletal muscle atrophy induced by reduced contractile activity (i.e. , hindlimb unweighting). Female adult rats (6 mo old) were assigned to one of four experimental groups (n = 10/group): 1) sedentary control (Con), 2) heat stress (Heat), 3) hindlimb unweighting (HLU), or 4) heat stress before hindlimb unweighting (Heat+HLU). Animals in the Heat and Heat+HLU groups were exposed to 60 min of hyperthermia (colonic temperature approximately 41.6 degrees C). Six hours after heat stress, both the HLU and Heat+HLU groups were subjected to hindlimb unweighting for 8 days. After hindlimb unweighting, the animals were anesthetized, and the soleus muscles were removed, weighed, and analyzed for protein content and the relative levels of heat shock protein 72 (HSP72). Compared with control and HLU animals, the relative content of HSP72 in the soleus muscle was significantly elevated (P < 0.05) in both the Heat and Heat+HLU animals. Although hindlimb unweighting resulted in muscle atrophy in both the HLU and Heat+HLU animals, the loss of muscle weight and protein content was significantly less (P < 0.05) in the Heat+HLU animals. These data demonstrate that heat stress before hindlimb unweighting can reduce the rate of disuse muscle atrophy. We postulate that HSP70 and/or other stress proteins play a role in the control of muscle atrophy induced by reduced contractile activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号