首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Myosin subunit composition in human developing muscle.   总被引:5,自引:2,他引:3       下载免费PDF全文
Previous pyrophosphate-gel studies have reported the existence of embryonic neonatal myosin isoenzymes in human developing muscle. The present investigation was undertaken to characterize their subunit composition more precisely. Two immature muscle myosins are contrasted with adult myosin: neonatal myosin and foetal myosin. The neonatal form of myosin is weakly cross-reactive with rabbit slow myosin and contains only fast-type light chains (LC), LC1F and LC2F. The associated heavy chains consist of a single electrophoretic component that reacts exclusively with antibodies against human foetal myosin and has a mobility and peptide pattern distinct from that of adult fast and slow heavy chains. Foetal myosin is distinguished by the presence of low amounts of a heavy chain immunologically cross-reactive with the adult slow form and of two additional light-chain components: a LC2S light chain and a foetal-specific light chain (LCemb.). The foetal-specific light chain, as shown by one-dimensional-peptide-map analysis, is structurally unrelated to both LC1S and LC1F light chains of human adult myosin. We conclude from these results that the ontogenesis of human muscle myosin shares certain common features with that observed in other species, except for the persistence until birth of a foetal form of heavy chain (HCemb.).  相似文献   

2.
By using immunoaffinity column chromatography slow (I) and fast (IIA, IIB) myosins were isolated from human (vastus lateralis) and rabbit (tibialis anterior, psoas and conoidal bundle) skeletal muscles. The peptide pattern revealed that slow (I) and fast (IIA, IIB) myosin heavy chains are quite distinct, as are those from pure slow (conoidal bundle) and fast (psoas) rabbit skeletal muscles. Unlike Billeter et al. (1981) the authors observed that fast human myosins were always associated with a small amount of slow myosin light chains. The fast myosins (IIA, IIB) from rabbit tibialis anterior muscle did not appear very distinct and contained only fast myosin light chains. These myosins were different from the IIB myosin from the psoas muscle. Ten per cent of the fibres revealed histochemically as fast IIA also reacted with an anti-slow myosin antibody. The classical histochemical techniques appear inadequate to demonstrate the existing differences among fibre types, but the monoclonal antibodies hold promise.  相似文献   

3.
Antibodies specific for rabbit fast-twitch-muscle myosin LCIF light chain were purified by affinity chromatography and characterized by both non-competitive and competitive enzyme-linked immunosorbent assay (ELISA) and a gel-electrophoresis-derived assay (GEDELISA). The antibodies did not cross-react with myosin heavy chains, and were weakly cross-reactive with the LC2F [5,5'-dithio-(2-nitrobenzoic acid)-dissociated] light chain and with all classes of dissociated light chains (LC1Sa, LC1Sb and LC2S), as well as with the whole myosin, from hind-limb slow-twitch muscle. The immunoreactivity of myosins with a truly mixed light-chain pattern (e.g. vastus lateralis and gastrocnemius) correlated with percentage content of fast-twitch-muscle-type light chains. A more extensive immunoreactivity was observed with diaphragm and masseter myosins, which were also characterized, respectively, by a relative or absolute deficiency of LC1Sa light chain. Furthermore, it was found that the LC1Sb light chain of masseter myosin is antigenically different from its slow-twitch-muscle myosin analogue, and is immunologically related to the LC1F light chain. Rabbit masseter muscle from its metabolic and physiological properties and the content, activity and immunological properties of sarcoplasmic-reticulum adenosine triphosphatase, is classified as a red, predominantly fast-twitch, muscle. Therefore our results suggest that the two antigenically different iso-forms of LC1Sb light chain are associated with the myosins of fast-twitch red and slow-twitch red fibres respectively.  相似文献   

4.
Summary— In contrast to general belief, the response of rabbit muscles to denervation is maturation to slow-like type muscles [7]. We report now an investigation by biochemical, morphological, and mechanical studies of the time course effects of muscle denervation on the slow-type soleus and fast-type gastrocnemius to help clucidate the mechanism of maturation of rabbit denervated muscles to slow-like muscles. In both muscles, denervation induced selective progressive atrophy of most fast fibers and hypertrophy of many slow fibers which displayed wide Z-lines; this was accompanied by the appearance of hybrid LC1F- and LC1E-associated slow myosins. The percentage of slow myosins increased with age similarly in the contralateral and denervated soleus. On the other hand, the percentage of slow myosins remained low in the contralateral gastrocnemius, whereas it increased to 95% in the denervated gastrocnemius; in the denervated gastrocnemius, the percentage of slow myosins reached 50% at about 35 days postnatal. At this age, the maximal shortening velocity of the denervated gastrocnemius and its twitch contraction time were already those of a slow-type muscle. This suggests that in addition to myosin, other proteins contributed to the mechanical properties of the denervated gastrocnemius. Transformation of rabbit denervated muscles to slow-like type muscles, which are associated with a lower energy requirement and higher muscle endurance than fast-type muscles, may constitute an adequate model for human neuromuscular pathology.  相似文献   

5.
Myosin light and heavy chains from skeletal and cardiac muscles and from the electric organ of Electrophorus electricus (L.) were characterised using biochemical and immunological methods, and compared with myosin extracted from avian, reptilian, and mammalian skeletal and cardiac muscles. The results indicate that the electric tissue has a myosin light chain 1 (LC1) and a muscle-specific myosin heavy chain. We also show that monoclonal antibody F109-12A8 (against LC1 and LC2) recognizes LC1 of myosin from human skeletal and cardiac muscles as well as those of rabbit, lizard, chick, and electric eel. However, only cardiac muscles from humans and rabbits have LC2, which is recognized by antibody F109-16F4. The data presented confirm the muscle origin of the electric tissue of E. electricus. This electric tissue has a profile of LC1 protein expression that resembles the myosin from cardiac muscle of the eel more than that from eel skeletal muscle. This work raises an interesting question about the ontogenesis and differentiation of the electric tissue of E. electricus.  相似文献   

6.
1. A purified preparation of Ascaris myosin was obtained from the muscle layer of Ascaris lumbricoides suum, using gel filtration and ion-exchange chromatography. 2. Ascaris myosin whether purified or unpurified, had almost the same ability for ATP-splitting and superprecipitation. 3. Ascaris myosin and rabbit skeletal myosin were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A significant difference in the number of light chains between both myosins was found. Ascaris myosin was found to have one heavy chain and two distinct light chain components (LC1-A and LC2-A), having molecular weights of 18000 and 16000, respectively. These light chains correspond in molecular weight to the light chain 2 (LC2-S) and light chain 3 (LC3-S) in rabbit skeletal myosin. 4. LC1-A could be liberated from the Ascaris myosin molecule reacted with 5,5'-dithio-bis(2-nirobenzoic acid( Nbs2) with recovery of ATPase activity by addition of dithiothreitol. These properties are equivalent to those of the LC2-S in rabbit skeletal myosin, although Ascaris myosin when treated with Nbs2-urea lost its ATPase activity.  相似文献   

7.
E Dufour  A Ouali  A Obled  C Deval  C Valin 《Biochimie》1989,71(5):625-632
We investigated the limited proteolysis of fast and slow myosins purified from rabbit psoas major and semimembranosus proprius muscles, respectively, by the main lysosomal proteinases: cathepsins B, H, L, and D. In EDTA containing buffer, cathepsin D cleaved both myosins only at the rod-S1 junction leading to the formation of two S1 fragments of slightly higher Mr than the three forms obtained with chymotrypsin. On addition of MgCl2 instead of EDTA, myosin hydrolysis was markedly reduced. In contrast, irrespective of the presence of either MgCl2 or EDTA, cathepsin B hydrolysed both myosins into HMM and LMM. Cathepsin L digested myosins more extensively than cathepsins B and D and the main fragments generated were, in decreasing order of importance, rod, S1, S2, HMM, and LMM. In the incubation conditions tested, cathepsin H displayed nondetectable action on myosins. As fast and slow myosin digest patterns were compared, the main differences observed concerned the size of the proteolytic products and the rate of hydrolysis, which was about 4-fold higher for the fast than for the slow isoform. This appeared consistent whatever enzyme was considered.  相似文献   

8.
We investigated the expression of myosin light chains and tropomyosin subunits during chick embryonic development of the anterior (ALD) and posterior (PLD) parts of the latissimus dorsi muscles. As early as day 8 in ovo, both muscles accumulate a common set of myosin light chains (LC) in similar ratios (LC1F: 55 per cent; LC2S: 25 per cent; LC2F: 12 per cent; LC1S: 8 per cent) and a common set of tropomyosin (TM) subunits (beta 2, beta 1, alpha 2F). Later during development, the slow components of the LC regularly disappear in the PLD and the fast components of the LC and the alpha 2FTM disappear in the ALD, so that the adult pattern is almost established at the time of hatching. Thus, early in development, the two muscles accumulate a common set of fast and slow myosin light chains and fast tropomyosin and some isoforms are repressed at a later stage during development. These data might suggest that during development, the regulatory mechanisms of muscle specific isoform expression differ from one contractile protein to another.  相似文献   

9.
In this study, myosin types in human skeletal muscle fibers were investigated with electrophoretic techniques. Single fibers were dissected out of lyophilized surgical biopsies and typed by staining for myofibrillar ATPase after preincubation in acid or alkaline buffers. After 14C-labelling of the fiber proteins in vitro by reductive methylation, the myosin light chain pattern was analysed on two-dimensional gels and the myosin heavy chains were investigated by one-dimensional peptide mapping. Surprisingly, human type I fibers, which contained only the slow heavy chain, were found to contain variable amounts of fast myosin light chains in addition to the two slow light chains LC1s and LC2s. The majority of the type I fibers in normal human muscle showed the pattern LC1s, LC2s and LC1f. Further evidence for the existence in human muscle of a hybrid myosin composed of a slow heavy chain with fast and slow light chains comes from the analysis of purified human myosin in the native state by pyrophosphate gel electrophoresis. With this method, a single band corresponding to slow myosin was obtained; this slow myosin had the light chain composition LC1s, LC2s and LC1f. Type IIA and IIB fibers, on the other hand, revealed identical light chain patterns consisting of only the fast light chains LC1f, LC2f and LC3f but were found to have different myosin havy chains. On the basis of the results presented, we suggest that the histochemical ATPase normally used for fibre typing is determined by the myosin heavy chain type (and not by the light chains). Thus, in normal human muscle a number of 'hybrid' myosins were found to occur, namely two extreme forms of fast myosins which have the same light chains but different heavy chains (IIA and IIB) and a continuum of slow forms consisting of the same heavy chain and slow light chains with a variable fast light chain composition. This is consistent with the different physiological roles these fibers are thought to have in muscle contraction.  相似文献   

10.
Myosins prepared from chicken and rabbit fast and slow muscles were treated with 5,5'-dithiobis-(2-nitrobenzoic acid) (Nbs2). About half of the thiol groups of the fast muslce myosins reacted with Nbs 2, but in slow muscle myosins, only about 10-20% of the thiol groups reacted. This treatment removed 50-60% of the L2 components, Nbs2 light chain, from fast muscle myosins, but did not result in specific dissociation of the light chains in slow myscle myosins. The treatment sometimes released L4 component from chicken muscle myosins instead of L2 component. The changes of myosin ATPase [EC 3.6.1.3] activities caused by this treatment did not correlate with the release of Nbs2 light chain, but were dependent upon the species, chicken or rabbit.  相似文献   

11.
Isozymes of myosin have been localized with respect to individual fibers in differentiating skeletal muscles of the rat and chicken using immunocytochemistry. The myosin light chain pattern has been analyzed in the same muscles by two-dimensional PAGE. In the muscles of both species, the response to antibodies against fast and slow adult myosin is consistent with the speed of contraction of the muscle. During early development, when speed of contraction is slow in future fast and slow muscles, all the fibers react strongly with anti-slow as well as with anti-fast myosin. As adult contractile properties are acquired, the fibers react with antibodies specific for either fast or slow myosin, but few fibers react with both antibodies. The myosin light chain pattern slow shows a change with development: the initial light chains (LC) are principally of the fast type, LC1(f), and LC2(f), independent of whether the embryonic muscle is destined to become a fast or a slow muscle in the adult. The LC3(f), light chain does not appear in significant amounts until after birth, in agreement with earlier reports. The predominance of fast light chains during early stages of development is especially evident in the rat soleus and chicken ALD, both slow muscles, in which LC1(f), is gradually replaced by the slow light chain, LC1(s), as development proceeds. Other features of the light chain pattern include an "embryonic" light chain in fetal and neonatal muscles of the rat, as originally demonstrated by R.G. Whalen, G.S. Butler- Browne, and F. Gros. (1978. J. Mol. Biol. 126:415-431.); and the presence of approximately 10 percent slow light chains in embryonic pectoralis, a fast white muscle in the adult chicken. The response of differentiating muscle fibers to anti-slow myosin antibody cannot, however, be ascribed solely to the presence of slow light chains, since antibody specific for the slow heavy chain continues to react with all the fibers. We conclude that during early development, the myosin consists of a population of molecules in which the heavy chain can be associated with a fast, slow, or embryonic light chain. Biochemical analysis has shown that this embryonic heavy chain (or chains) is distinct from adult fast or slow myosin (R.G. Whalen, K. Schwartz, P. Bouveret, S.M. Sell, and F. Gros. 1979. Proc. Natl. Acad. Sci. U.S.A. 76:5197-5201. J.I. Rushbrook, and A. Stracher. 1979. Proc Natl. Acad. Sci. U.S.A. 76:4331-4334. P.A. Benfield, S. Lowey, and D.D. LeBlanc. 1981. Biophys. J. 33(2, Pt. 2):243a[Abstr.]). Embryonic myosin, therefore, constitutes a unique class of molecules, whose synthesis ceases before the muscle differentiates into an adult pattern of fiber types.  相似文献   

12.
Twitch tension and maximal unloaded velocity of human knee extensor muscles were studied under conditions of low phosphate content of the phosphorylatable light chains (P-light chains) of myosin and elevated phosphate content, following a 10-s maximal voluntary isometric contraction (MVC). After the MVC, twitch tension was significantly potentiated, with greater potentiation observed at a shorter muscle length (p less than 0.05). The MVC was associated with at least a twofold increase in phosphate content of the fast (LC2F) and two slow (LC2S and LC2S') P-light chains, but this increase was unrelated to muscle length. No significant differences in knee extension velocity were observed between conditions where P-light chains had low or elevated phosphate content. Positive but nonsignificant correlations were noted between the extent of twitch potentiation and phosphate content of individual P-light chains as well as the percentage of type II muscle fibres in vastus lateralis muscle. No significant relationships were determined for myosin light chain kinase activity and either P-light chain phosphorylation or type II fibre percentage. These data suggest that, unlike other mammalian fast muscles, P-light chain phosphorylation of mixed human muscles is not strongly associated with altered contractile performance.  相似文献   

13.
The expression of myosin isoforms and their subunit composition in the white skeletal body musculature of Arctic charr (Salvelinus alpinus) of different ages (from 77-day embryos until about 5 years old) was studied at the protein level by means of electrophoretic techniques. Myosin from the white muscle displayed three types of light chain during all the developmental stages examined: two myosin light chains type 1 (LC1F) differing in both apparent molecular mass and pI, one myosin light chain type 2 (LC2F) and one myosin light chain type 3 (LC3F). The fastest-migrating form of LC1F seemed to be predominant during the embryonic and eleutheroembryonic periods. The slowest-migrating form of LC1F was predominant in the 5-year-old fish. Between 1 year and 4 years, both types of LC1F were present in similar amounts. Cardiac as well as red muscle myosin from 3-year-old fish had two types of light chain. The myosin light chains from atria and ventriculi were indistinguishable by two-dimensional electrophoresis, but were different from the myosin light chains from red muscle. Neither the light chains from cardiac nor red muscle were coexpressed with the myosin light chains of white muscle at any of the developmental stages examined. Two myosin heavy chain bands were resolved by SDS/glycerol/polyacrylamide gel electrophoresis of the extract from embryos. One of the bands was present in minor amounts. The other, and most abundant, band comigrated with the only band found in the extracts of white muscle myosin from older fish. One-dimensional Staphylococcus aureus V8 protease peptide mapping of these bands revealed some differences during development of the white muscle tentatively interpreted as follows. The myosin heavy chain band present in minor amounts in the embryos may represent an early embryonic form that is replaced by a late embryonic or foetal form in the eleutheroembryos. The foetal myosin heavy chain appears to be present until the resorption of the yolk sack and beginning of the free-swimming stage. A new form of myosin heavy chain, termed neonatal and probably expressed around hatching, is present until about 1 year of age.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The expression of myosin light chains (MLCs) during the development of human skeletal muscle was investigated by using two different two-dimensional electrophoretic techniques. In both electrophoretic systems the predominant light chain 1 (LC1) expressed during the whole fetal period was found to co-migrate with the adult fast LC1 (LC1F). The main LC2 expressed during the whole fetal period was found to be different from the main fast LC2 (LC2F) and slow LC2 (LC2S) usually present in adult muscle, but co-migrated with a minor component often present in adult muscle. This fetal LC2 was phosphorylatable, and the phosphorylated form co-migrated with the main component of LC2F expressed in the adult. The adult fast LC3 appeared as early as week 20 of gestation, whereas the adult slow light chains (LC1S and LC2S) appeared only during the late fetal period. A minor component of LC1, previously described in humans as an 'embryonic LC' (LCemb.) [Strohman, Micou-Eastwood, Glass & Matsuda (1983) Science 221, 955-957], was only expressed in the early fetal period and was found to co-migrate with atrial LC1 (ALC1). We discuss the expression of these specific developmental forms of MLCs co-existing with immature myosin heavy chains during fetal life.  相似文献   

15.
We investigated the expression of myosin light chains and tropomyosin subunits during chick embryonic development of the anterior (ALD) and posterior (PLD) parts of the latissimus dorsi muscles. As early as day 8 in ovo, both muscles accumulate a common set of myosin light chains (LC) in similar ratios (LC1F : 55 per cent; LC2S : 25 per cent; LC2F : 12 per cent ; LC1S : 8 per cent) and a common set of tropomyosin (TM) subunits (β2, β1, α2F).Later during development, the slow components of the LC regularly disappear in the PLD and the fast components of the LC and the α2FTM disappear in the ALD, so that the adult pattern is almost established at the time of hatching.Thus, early in development, the two muscles accumulate a common set of fast and slow myosin light chains and fast tropomyosin and some isoforms are repressed at a later stage during development. These data might suggest that during development, the regulatory mechanisms of muscle specific isoform expression differ from one contractile protein to another.  相似文献   

16.
Incubation of myosin with myopathic hamster protease results in substantial (more than 80%) removal of light chain 2 (LC2) with limited breakdown of the heavy chains. LC2-deficient myosin, purified by ion exchange chromatography, migrates as a single, monodisperse boundary in the analytical ultracentrifuge. The Ca2+- and EDTA-activated ATPases of LC2-deficient myosin are similar to those of the control and LC2-recombined myosins indicating that no denaturation occurred in its preparation. Double reciprocal plots for LC2-deficient, control, and LC2-recombined myosins reveal a biphasic behavior i.e. at actin concentrations above 11 microM, there is a sharp break in the 1/V versus 1/[actin] plots for all samples. The Vm values for LC2-deficient myosin are 50% lower (at low actin, Vm = 3.0 s-1, and at high actin, Vm = 4.2 s-1) than those for control myosin (Vm = 5.3 s-1 at low actin and 8.3 s-1 at high actin). Readdition of LC2 to LC2-deficient myosin restores the actin-activated ATPase to control levels. Electron microscopy of shadow cast preparations reveals a subtle difference between LC2-deficient myosin, and control or recombined myosin. In control and recombined myosins, S1 heads appear "pear"-shaped, whereas in LC2-deficient myosin, the S1 heads are rounder and display a "thinning" of mass in the "neck" region, suggesting that LC2 binds at the S1/S2 junction. Furthermore, removal of LC2 apparently influences the assembly of myosin into minifilaments, as revealed to a certain degree, by an increase in the width of the bare zone, accompanied by a decrease in the stability of these minifilaments.  相似文献   

17.
The phosphate content of the fast (LC2F) and two slow (LC2S and LC2S1) phosphorylatable light chains (P-light chains) in myosin isolated from biopsy samples of rested human vastus lateralis muscle averaged 0.21, 0.28 and 0.25 mol of phosphate per mol of P-light chain, respectively. Following a 10 s maximal contraction, phosphate content was increased by almost 2-fold in the fast and two slow P-light chains. After prolonged, moderate cycling activity phosphate content was only slightly increased in the three P-light chains. These data suggest that, unlike animal skeletal muscle, myosin light chain kinase and phosphatase activities are similar in human fast and slow muscle fibres.  相似文献   

18.
Differentiation of quail myoblasts, isolated from thigh pectoralis and anterior latissimus dorsi muscle, was analyzed in primary cultures and in cultures obtained following repeated subculturing. Our study shows that quail myoblasts can survive many generations without losing their ability to form myotubes. However, during these subcultures the cells progressively express a new phenotype. This phenotype is characterized by a mixture of myosin light chains such that LC1F, LC2F, and LC2S are present in roughly equimolar amounts, each accounting for 25 to 30% of the total light chain synthesis while LC1S accounts for the remaining 10 to 15%, and by a mixture of fast and slow alpha tropomyosin in which alpha S accounts for 10 to 15% of the alpha subunits synthesis. Clonal analysis indicates that all cells in the population express this phenotype which is also characteristic of subcultures obtained from both future fast and slow muscles. Relationships between this phenotype and muscle development are discussed.  相似文献   

19.
We have studied the fiber type-specific expression of the fast myosin light chain isoforms LC 1f, LC 2f, and LC 3f in adult chicken muscles using in situ hybridization and two-dimensional gel electrophoresis. Type II (fast) fibers contain all three fast myosin light chain mRNAs; Types I and III (slow) fibers lack them. The myosin light chain patterns of two-dimensional gels from microdissected single fibers match their mRNA signals in the in situ hybridizations. The results confirm and extend previous studies on the fiber type-specific distribution of myosin light chains in chicken muscles which used specific antibodies. The quantitative ratios between protein and mRNA content were not the same for all three fast myosin light chains, however. In bulk muscle samples, as well as in single fibers, there was proportionally less LC 3f accumulated for a given mRNA concentration than LC 1f or LC 2f. Moreover, the ratio between LC 3f mRNA and protein was different in samples from muscles, indicating that LC 3f is regulated somewhat differently than LC 1f and LC 2f. In contrast to other in situ hybridization studies on the fiber type-specific localization of muscle protein mRNAs, which reported the RNAs to be located preferentially at the periphery of the fibers, we found all three fast myosin light chain mRNAs quite evenly distributed within the fiber's cross-sections, and also in the few rare fibers which showed hybridization signals several-fold higher than their surrounding counterparts. This could indicate principal differences in the intracellular localization among the mRNAs coding for various myofibrillar protein families.  相似文献   

20.
Isoelectric focusing of purified vascular smooth muscle myosin revealed two variants of the 17,000-dalton light chain subunits. The isoelectric points of the light chain variants were determined to be 4.13 (LC17a) and 4.19 (LC17b). Tryptic peptide maps of the two species of light chain generated by reverse-phase high performance liquid chromatography disclosed small but obvious differences in peptide composition while amino acid analyses of the variants were quite similar. Two-dimensional electrophoresis of extracts from various mammalian smooth muscles revealed tissue-specific differences in the relative content of LC17a and LC17b. Vascular (aorta, carotid, and pulmonary artery) muscles and tracheal smooth muscle contained both light chain variants while smooth muscle of the gastrointestinal tract (stomach and jejunum) contained LC17a only. The actin-activated Mg2+-ATPase activities of both phosphorylated and nonphosphorylated stomach (LC17b = 0) and aortic (LC17b = 40%) myosins were compared. In the presence of saturating tropomyosin, a 2-fold difference in Vmax was measured: phosphorylated, aortic, 0.119 +/- 0.009 versus stomach, 0.239 +/- 0.012 mumol of PO4 liberated/min/mg of myosin; nonphosphorylated, aortic, 0.065 +/- 0.004 versus stomach, 0.123 +/- 0.004 mumol of PO4 liberated/min/mg of myosin. In addition, the Vmax of myosin subfragment-1 ATPase from bovine aortic, pulmonary artery, and stomach myosins (LC17b contents, 40, 20, and 0%, respectively) was found to decrease in direct proportion to the LC17b content. Our results suggest that isoforms of the 17,000-dalton light chain subunits of mammalian smooth muscle myosin could play an important role in modulating actomyosin ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号