首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu X  Malave A 《Life sciences》2000,67(26):3221-3230
Recently mitogen-activated protein kinase (MAPK) has been reported to play an important role in phosphorylation cascades governing cell growth and protein expression in numerous cell types. In order to explore the signaling mechanism by which inducible nitric oxide synthase (iNOS) is regulated in C6 glioma cells, we investigated the role of MAPK in iNOS expression by using the specific MAPK inhibitors. First the induction of nitric oxide by lipopolysaccharide (LPS), tumor necrosis factor alpha (TNFalpha), interferon gamma (IFNgamma), alone or their combination, was studied in C6 glioma cells. Administration of LPS, TNFalpha, or IFNgamma alone had no detectable stimulatory effect on the production of nitric oxide (NO). However, combination of the three factors elicited a significant elevation of NO level in C6 cell culture medium. Subsequently pretreatment of C6 cells with a specific inhibitor of p38 MAPK, SB202190, resulted in a dose-dependent inhibition of NO production and iNOS expression, but PD98059, an inhibitor of p42/p44 MAPK activation, had no effect. These data suggest that p38 MAPK mediates iNOS expression in C6 glioma cells, but p42/p44 MAPK is not involved in this process.  相似文献   

2.
3.
Lipopolysaccharide (LPS) is a major cell wall component of Gram-negative bacteria and signals through a receptor complex which consists of TLR4, MD-2 and CD14. LPS signaling in macrophages induces the production of many pro-inflammatory molecules, including nitric oxide (NO). In this study, we have shown that folimycin, a macrolide antibiotic and a specific inhibitor of vacuolar ATPase (V-ATPase), inhibits LPS-induced NO production, but not TNFalpha production, in murine elicited peritoneal macrophages. However, folimycin did not affect interferon-gamma induced NO production. LPS-induced iNOS mRNA and protein expression and NF-kappaB activation were also inhibited by folimycin. Interestingly, folimycin-treated cells showed reduced surface expression of TLR4 molecules and dilated Golgi apparatus. These findings suggest that folimycin, by inhibiting V-ATPases, alters intra-Golgi pH, which in turn causes defective processing and reduced surface expression of TLR4 reducing the strength of LPS signaling in murine macrophages.  相似文献   

4.
Mercury is well known to adversely affect the immune system; however, little is known regarding its molecular mechanisms. Macrophages are major producers of nitric oxide (NO) and this signaling molecule is important in the regulation of immune responses. The present study was designed to determine the impact of mercury on NO and cytokine production and to investigate the signaling pathways involved. The murine macrophage cell line J774A.1 was used to study the effects of low-dose inorganic mercury on the production of NO and proinflammatory cytokines. Cells were treated with mercury in the presence or absence of lipopolysaccharide (LPS). Mercury (5-20 microM) dose-dependently decreased the production of NO in LPS-stimulated cells. Concomitant decreases in the expression of inducible nitric oxide synthase (iNOS) mRNA and protein were detected. Treatment of J774A.1 cells with mercury alone did not affect the production of NO nor the expression of iNOS mRNA or protein. Interestingly, mercury alone stimulated the expression of tumor necrosis factor alpha (TNFalpha), and increased LPS-induced TNFalpha and interleukin-6 mRNA expression. Mercury inhibited LPS-induced nuclear translocation of nuclear factor kappaB (NF-kappaB) but had no effect alone. In contrast, mercury activated p38 mitogen-activated protein kinase (p38 MAPK) and additively increased LPS-induced p38 MAPK phosphorylation. These results indicate that mercury suppresses NO synthesis by inhibition of the NF-kappaB pathway and modulates cytokine expression by p38 MAPK activation in J774A.1 macrophage cells.  相似文献   

5.
The role of nitric oxide (NO) in the regulation of lipogenesis and lipolysis in RAW 264.7 macrophages loaded with oleic acid (OA) was investigated in this paper. Magnolol stimulated full lipolysis without affecting NO levels. Both inhibition and elevation of NO production in OA-loaded macrophages did not induce lipolysis. Besides, lipopolysaccharide (LPS)-induced increased accumulation of lipid droplets was not reduced by down-regulation of NO levels. Moreover, incubation of macrophages with sodium nitroprusside (SNP), an NO donor, stimulated significant NO production without altering the lipid droplet accumulation. All these results clearly demonstrate that NO is not involved in the modulation of lipid metabolism in macrophages loaded with OA.  相似文献   

6.
Tumor necrosis factor alpha (TNFalpha) has been shown to be a potent stimulator of prostaglandin (PG) F(2alpha) secretion in the bovine endometrium. The aims of the present study were to determine the cell types in the endometrium (epithelial or stromal cells) responsible for the secretion of PGF(2alpha) in response to TNFalpha, and the intracellular mechanisms of TNFalpha action. Cultured bovine epithelial and stromal cells were exposed to TNFalpha (0.006-6 nM) or oxytocin (100 nM) for 4 h. TNFalpha resulted in a dose-dependent increase of PGF(2alpha) production in the stromal cells (P < 0.001) but not in the epithelial cells. On the other hand, oxytocin stimulated PGF(2alpha) output in the epithelial cells but not in the stromal cells. When the stromal cells were incubated for 24 h with TNFalpha and inhibitors of phospholipase (PL) C or PLA(2), only PLA(2) inhibitor completely stopped the actions of TNFalpha (P < 0.001). When the stromal cells were exposed to TNFalpha and arachidonic acid, the action of TNFalpha was augmented (P < 0.001). When the stromal cells were incubated for 24 h with a nitric oxide (NO) donor (S-NAP), S-NAP stimulated the PGF(2alpha) production dose-dependently. Although an NO synthase (NOS) inhibitor (L-NAME) reduced TNFalpha-stimulated PGF(2alpha) production, an inhibitor of phosphodiesterase augmented the actions of TNFalpha and S-NAP (P < 0. 05). The overall results indicate that the target of TNFalpha for stimulation of PGF(2alpha) production in cattle is the endometrial stromal cells, and that the actions of TNFalpha are mediated via the activation of PLA(2) and arachidonic acid conversion. Moreover, TNFalpha may exert a stimulatory effect on PGF(2alpha) production via the induction of NOS and the subsequent NO-cGMP formation.  相似文献   

7.
IL-2-activated killer lymphocytes (LAK cells) secrete inflammatory cytokines such as interferon-gamma (IFN-gamma) and tumor necrosis factor alpha (TNFalpha) that can induce nitric oxide (NO) synthesis. We evaluated whether LAK cells could activate NO synthesis in human cancer cells. LAK cells and their culture supernatants induced NO synthesis in DLD-1 colon cancer cells in a dose-dependent manner. NO synthesis was inhibited completely by blocking antibodies to IFN-gamma, demonstrating a key role for this LAK cell cytokine in regulating NO synthesis. The addition of TNFalpha antibodies resulted in partial inhibition. Induction of iNOS mRNA and protein expression in DLD-1 cells was detected. Endogenous NO production inhibited DLD-1 cell proliferation and induced apoptosis, processes that were inhibitable by the NO synthase inhibitor N(G)-monomethyl-l-arginine. Our study has identified a novel, non-contact-dependent LAK cell cytotoxic mechanism: induction of growth inhibition and programmed cell death due to endogenous NO synthesis in susceptible human cancer cells.  相似文献   

8.
The natural flavonoid quercetin has antioxidant, anti-inflammatory, and anticancer effects. We investigated the effect of quercetin on lipopolysaccharide (LPS)-induced macrophage migration. Quercetin significantly attenuated LPS-induced inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) production in RAW264.7 cells without affecting their viability. Additionally, quercetin altered the cell size and induced an elongated morphology and enlarged the vacuoles and concentrated nuclei. Quercetin significantly disrupted the F-actin cytoskeleton structure. Furthermore, quercetin strongly inhibited LPS-induced macrophage adhesion and migration in a dose-dependent manner. Moreover, quercetin inhibited the LPS-induced expression of p-FAK, p-paxillin, FAK, and paxillin as well as the cytoskeletal adapter proteins vinculin and Tensin-2. Therefore, quercetin suppresses LPS-induced migration by inhibiting NO production, disrupting the F-actin cytoskeleton, and suppressing the FAK–paxillin pathway. Quercetin may thus have potential as a therapeutic agent for chronic inflammatory diseases.  相似文献   

9.
The Chinese herb Salvia miltiorrhiza (SM) has been found to have beneficial effects on the circulatory system. In the present study, we investigated the effects of cryptotanshinone (derived from SM) on endothelin-1 (ET-1) expression in human umbilical vein endothelial cells (HUVECs). The effect of cryptotanshinone on nitric oxide (NO) in HUVECs was also examined. We found that cryptotanshinone inhibited basal and tumor necrosis factor-alpha (TNF-alpha) stimulated ET-1 secretion in a concentration-dependent manner. Cryptotanshinone also induced a concentration-dependent decrease in ET-1 mRNA expression. Cryptotanshinone increased basal and TNF-alpha-attenuated NO production in a dose-dependent fashion. Cryptotanshinone induced a concentration-dependent increase in endothelial nitric oxide synthase (eNOS) expression without significantly changing neuronal nitric oxide synthase (nNOS) expression in HUVECs in the presence or absence of TNF-alpha. NOS activities in the HUVECs were also induced by cryptotanshinone. Furthermore, decreased ET-1 expression in response to cryptotanshinone was not antagonized by the NOS inhibitor l-NAME. A gel shift assay further showed that TNF-alpha-induced Nuclear Factor-kappaB (NF-kappaB) activity was significantly reduced by cryptotanshinone. These data suggest that cryptotanshinone inhibits ET-1 production, at least in part, through a mechanism that involves NF-kappaB but not NO production.  相似文献   

10.
The inhibitory effect of cavernolide, a novel C2, terpene lactone isolated from the sponge Fasciospongia cavernosa, on PLA2 and other enzyme activities involved in the inflammatory process was studied. Cavernolide inhibited human synovial sPLA2 in a concentration-dependent manner with an IC50 value of 8.8 microM. Besides, this compound decreased in the nanomolar range the myeloperoxidase degranulation process using different stimuli. Cavernolide also inhibited TNFalpha, NO and PGE2 production in intact cell experiments. NO and PGE2 reduction was the consequence of the inhibition on iNOS and COX-2 expression because it did not affect inducible nitric oxide synthase and cyclooxygenase-2 activities in intact cells.  相似文献   

11.
12.
Zhu DY  Li R  Liu GQ  Hua WY 《Life sciences》2000,66(14):1325-1335
It has been shown that independent sources of nitric oxide (NO) and the inflammatory cytokine tumor necrosis factor alpha (TNFalpha) contribute to the breakdown of the blood-brain barrier (BBB) in the pathogenesis of a number of brain disorders. However, the interaction of NO and TNFalpha has not been elucidated. The present study was designed to determine whether the toxicity induced by NO is altered by TNFalpha in brain capillary endothelial cells (BCECs), and if so, whether it is related to the generation of superoxide. TNFalpha (50-400 U/ml) did not produce toxicity until at a concentration of 800 U/ml. This toxic effect was completely blocked by copper-zinc superoxide dismutase (SOD)/catalase or N(omega)-nitro-L-arginine methyl ester (L-NAME) or oxyhemoglobin (HbO2). Sodium nitroprusside (SNP) reduced with 0.4 mM ascorbate (SNP/Vc) significantly increased Lactate dehydrogenase (LDH) efflux in a concentration-dependent manner. This cytotoxicity of SNP/Vc was also completely inhibited by SOD/catalase or HbO2. When SNP/Vc used in combination with 400 U/ml TNFalpha, a more remarkable LDH efflux was induced than SNP/Vc alone, even as little as 0.01 mM SNP/Vc was toxic, although a dose of 400 U/ml TNFalpha alone had no effect on LDH efflux. In addition, either 0.4 mM SNP/Vc and 800 U/ml TNFalpha alone or 0.4 mM SNP/Vc and 400 U/ml TNFalpha in combination significantly increased malondialdehyde (MDA) content, but nitric oxide synthase (NOS) activity was inhibited only by SNP/Vc and TNF in combination. These results suggest that TNFalpha enhances the toxicity of NO in BCECs and that at least part of this enhancement involves the generation of superoxide.  相似文献   

13.
Evidence for the involvement of a bacterial nitric oxide synthase (NOS) in the biosynthesis of a phytotoxin is presented. Several species of Streptomyces bacteria produce secondary metabolites with unusual nitrogen groups, such as thaxtomin A (ThxA), which contains a nitroindole moiety. ThxA is a phytotoxin made by three pathogenic Streptomyces species that cause common scab of potato. All three species possess a gene homologous to the oxygenase domain of murine inducible NOS, and this gene, nos, is essential for normal levels of ThxA production. We grew Streptomyces turgidiscabies in the presence of several known NOS inhibitors and a nitric oxide (NO) scavenger to determine their effect on ThxA production. The NO scavenger (CPTIO) and four NOS inhibitors (NAME, NMMA, AG, and 7-NI) reduced ThxA production without affecting bacterial growth. A strain of S. turgidiscabies from which the nos gene had been deleted was grown in the presence of three NO donors (DEANO, SIN, and SNAP), and all three partially restored ThxA production. Our data suggest that bacterial nitric oxide synthases may, at least in part, produce NO for biosynthetic purposes, rather than for cellular signaling, as they do in mammals.  相似文献   

14.
Prostaglandins (PGs), the arachidonic acid (AA) metabolites of the cyclooxygenase (COX) pathway, and the cytokine TNFalpha play major roles in inflammation and they are synthesised mainly by macrophages. Their syntheses have been shown to be regulated by several factors, including nitric oxide, a further important macrophage product. Since both positive and negative regulations of PGs and TNFalpha synthesis by NO have been reported, we sought to understand the mechanisms underlying these opposite NO effects by using a recent class of NO releasing compounds, the NONOates, which have been shown to release NO in a controlled fashion. To this aim, we analysed the effect of NO released from PAPA/NO (t1/2 15 min) and DETA/NO (t1/2 20 h) in RAW 264.7 cells. Both NONOates were used at the same concentrations allowing the cell cultures to be exposed either at high levels of NO for brief time (PAPA/NO) or at low levels of NO for long time (DETA/NO). We found that the two NONOates had opposite effect on basal TNFalpha release, being increased by PAPA/NO and decreased by DETA/NO, while they did not affect the release stimulated by LPS. At variance, both NONOates increased the basal PGE(2) production, while the LPS-stimulated production was slightly increased only by PAPA/NO. The modulation of PGE(2) synthesis was the result of the distinct effects of the two NO-donors on either arachidonic acid (AA) release or cyclooxygense-2 (COX-2) expression, the precursor and synthetic enzyme of PGs, respectively. Indeed, in resting cultures AA release was enhanced only by PAPA/NO whereas COX-2 expression was moderately upregulated by both donors. In LPS activated cells, both NONOates induced AA release, although with different kinetics and potencies, but only DETA/NO significantly increased COX-2 expression. In conclusion, by comparing the activities of these two NONOates, our observations indicate that level and time of exposure to NO are both crucial in determining the molecular target and the final result of the interactions between NO and inflammatory molecules.  相似文献   

15.
Lipopolysaccharides (LPS) are associated with various inflammatory diseases; therefore, the inhibition of LPS-induced nitric oxide (NO) production may have extensive therapeutic applications. We searched for inhibitors of NO production in the LPS-stimulated murine macrophage-like cell line RAW264.7 from MeOH extracts of marine organisms. The MeOH extract of the marine cyanobacterium Okeania sp., collected in Okinawa, Japan, showed inhibitory activity. Biseokeaniamide A was isolated from the MeOH extract by chromatographic separation. Biseokeaniamide A inhibited NO production without cytotoxicity. It reduced inducible nitric oxide synthase levels and suppressed the expression of IL-1β in LPS-stimulated RAW264.7 cells. Biseokeaniamide A did not inhibit IκBα degradation but inhibited IκBα expression. Thus, biseokeaniamide A, a naturally occurring lipopeptide, was identified as a selective inhibitor of LPS signal transduction.  相似文献   

16.
The effects of oxidatively modified low density lipoprotein (oxLDL) on atherogenesis may be partly mediated by alterations in the production of nitric oxide (NO) by vascular cells. Lipid hydroperoxides (LOOH) and lysophosphatidylcholine (lysoPC) are the major primary products of LDL oxidation. The purpose of this study was to characterize the effects of oxLDL, LOOH and lysoPC on NO production and the expression of inducible nitric oxide synthase (iNOS) gene in lipopolysaccharide (LPS) stimulated macrophages. LDL was oxidized using an azo-initiator 2,2'-azobis (2-amidinopropane) HCl (ABAP) and octadecadienoic acid was oxidized by lipoxygenase to generate 13-hydroperoxyl octadecadienoic acid (13-HPODE). Our study showed that oxLDL markedly decreased the production of NO, the levels of iNOS protein and iNOS mRNA in LPS stimulated macrophages. The inhibition potential of oxLDL on NO production and iNOS gene expression depended on the levels of LOOH formed in oxLDL and was not due to oxLDL cytotoxicity. Furthermore, 13-HPODE markedly reduced NO production and iNOS protein levels, whereas lysoPC showed only slight reduction. The effects of 13-HPODE and lysoPC did not require an acetylated LDL carrier. Our results suggest that 13-HPODE is a much more potent inhibitor of NO production and iNOS gene expression than lysoPC in LPS stimulated RAW264.7 macrophages.  相似文献   

17.
18.
We analyzed the effect of FK 506 on the production of nitric oxide by macrophages. Isolated rat peritoneal macrophages were cultured for 24 h with or without lipopolysaccharide (LPS) (5 microg/ml) and in the absence or presence of FK 506 (0.1 and 1 microg/ml). The concentration of NO2- in culture supernatants was taken as a measure of nitric oxide production. FK 506 (0.1 and 1 microg/ml) reduced the LPS-induced increase of NO2- levels by 68% and 81%, respectively. The impact of cyclosporin A (CsA) was studied in order to compare their effects. CsA (0.1 and 1 microg/ml) decreased the levels of nitrites by 39% and 69%, respectively. The results obtained suggest that both immunosuppressive drugs exhibit a dose-dependent inhibitory effect on nitric oxide production and that FK 506 is a more potent agent than CsA in this respect.  相似文献   

19.
Increased susceptibility to infections in obese patients may be related to decreased availability of arginine and glutamine, which may affect immune cell functions. Our aim was to evaluate the in vitro effects of these amino acids on the function of macrophages from obese insulin-resistant Zucker rats. Macrophages, isolated from male Zucker obese or lean rats by peritoneal lavage, were incubated in Dulbecco's modified Eagle medium (DMEM) without arginine or glutamine. Arginine or glutamine was added to the medium at increasing final concentrations (0, 0.25, 0.5, 1 or 2 mM). After stimulation by lipopolysaccharide (LPS) from E. coli (40 microg/ml), productions of tumour necrosis factor alpha (TNFalpha) and of nitric oxide (NO) were measured after 3 or 48 h incubation, respectively. NO production, lower in macrophages from obese rats, decreased in macrophages from lean rats (0 mM: 2,423 +/- 1,174 vs. 2 mM: 198 +/- 31 microM/mg protein/24 h; P < 0.05), but not in those from obese rats, when glutamine was added. TNFalpha production, lower in macrophages from obese rats, was inversely correlated with glutamine concentration. In the presence of arginine, NO production was constantly higher in macrophages from obese rats. It peaked at 0.5 mM arginine and decreased thereafter in both groups. TNFalpha production in macrophages from lean rats was unaffected by arginine, but decreased in macrophages from obese rats (0 mM: 1920 +/- 450 vs. 2 mM: 810 +/- 90 microM/mg protein/3 h; P < 0.05). These results suggest that abnormalities in cell signalling or in arginine and glutamine metabolism in macrophages of obese rats, resulting in decreased TNFalpha production and increased NO release, may contribute to increased susceptibility to infection in insulin-resistant states.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号