首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since 2005, increasing numbers of seizures of the designer drug of abuse 1-(3-chlorophenyl)piperazine (mCPP) have been reported. This paper describes the unequivocal proof of a mCPP intake. Differentiation from the intake of its precursor drugs trazodone and nefazodone was performed by a systematic toxicological analysis (STA) procedure using full-scan GC-MS after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation. The found mCPP/hydroxy-mCPP ratio indicated altered metabolism of this cytochrome (CYP) 2D6 catalyzed reaction compared to published studies using the same procedure. Although this might be ascribed to a poor metabolizer (PM) phenotype, genotyping revealed no PM genotype but indications for an intermediate metabolizer genotype. However, a PM phenotype could also be caused by drug-drug interactions with CYP2D6 inhibitors or substrates such as the co-consumed cocaine and diltiazem and/or diltiazem metabolites, respectively. In conclusion, the presented data indicate a possible relevance of CYP2D6 polymorphism and/or drug interactions to mCPP toxicokinetics, which is important for risk assessment of this new designer drug of abuse, in particular if it is used as adulterant of CYP2D6 substrates such as cocaine.  相似文献   

2.
Four different mutations of the cytochrome P450 CYP2D6 gene associated with the poor metabolizer phenotype (PM) of the debrisoquine/sparteine polymorphism were analyzed by Xba I restriction fragment length polymorphism (RFLP) analysis and a polymerase chain reaction (PCR)-based DNA amplification method in DNA of 394 healthy European subjects; 341 of these were phenotyped by sparteine or debrisoquine administration and urinary metabolic ratios (MR). Our study demonstrates the efficiency of the PCR-test for phenotype prediction; 96.4% of individuals were correctly predicted, i.e., 100% of the extensive metabolizers (EMs) and 86.0% of the poor metabolizers (PMs). In contrast, Xba I RFLP analysis was far less informative, predicting the phenotype in only 26.8% of PMs. By combining both DNA tests, the prediction rate of the PM phenotype increased to 90.6%. A point mutation at a splice-site consensus sequence termed D6-B represented the most common mutant CYP2D6 gene and accounted for more than 75% of mutant alleles. In addition, other known mutations such as D6-D (14%), D6-A (5%), and the rare D6-C mutation bring the identified mutant alleles to greater than 95% of all mutant PM-alleles. Most of Xba I 44-kb alleles were confirmed as mutant alleles carrying the D6-B mutation. However, 9.7% did not have this mutation and may express a functional CYP2D6 gene. Moreover, all Xba I 16 + 9-kb alleles contained the D6-B mutation. Heterozygous EM individuals had a significantly higher MR when compared to homozygous EMs. Genotyping provides an important advantage for investigations of the influence of CYP2D6 activity on drug therapy and its association with certain diseases.  相似文献   

3.
Cytochrome P450 2D6 (CYP2D6) metabolizes many important drugs. CYP2D6 activity ranges from complete deficiency to ultrafast metabolism, depending on at least 16 different known alleles. Their frequencies were determined in 589 unrelated German volunteers and correlated with enzyme activity measured by phenotyping with dextromethorphan or debrisoquine. For genotyping, nested PCR-RFLP tests from a PCR amplificate of the entire CYP2D6 gene were developed. The frequency of the CYP2D6*1 allele coding for extensive metabolizer (EM) phenotype was .364. The alleles coding for slightly (CYP2D6*2) or moderately (*9 and *10) reduced activity (intermediate metabolizer phenotype [IM]) showed frequencies of .324, .018, and .015, respectively. By use of novel PCR tests for discrimination, CYP2D6 gene duplication alleles were found with frequencies of .005 (*1x2), .013 (*2x2), and .001 (*4x2). Frequencies of alleles with complete deficiency (poor metabolizer phenotype [PM]) were .207 (*4), .020 (*3 and *5), .009 (*6), and .001 (*7, *15, and *16). The defective CYP2D6 alleles *8, *11, *12, *13, and *14 were not found. All 41 PMs (7.0%) in this sample were explained by five mutations detected by four PCR-RFLP tests, which may suffice, together with the gene duplication test, for clinical prediction of CYP2D6 capacity. Three novel variants of known CYP2D6 alleles were discovered: *1C (T1957C), *2B (additional C2558T), and *4E (additional C2938T). Analysis of variance showed significant differences in enzymatic activity measured by the dextromethorphan metabolic ratio (MR) between carriers of EM/PM (mean MR = .006) and IM/PM (mean MR = .014) alleles and between carriers of one (mean MR = .009) and two (mean MR = .003) functional alleles. The results of this study provide a solid basis for prediction of CYP2D6 capacity, as required in drug research and routine drug treatment.  相似文献   

4.
There is increasing evidence that alkylating agent exposure may increase large bowel cancer risk and factors which either alter such exposure or its effects may modify risk. Hence, in a cross-sectional study of 78 patients with colorectal disease, we have examined whether (i) metabolic genotypes (GSTT1, GSTM1, CYP2D6, CYP2E1) are associated with O(6)-methyldeoxyguanosine (O(6)-MedG) levels, O(6)-alkylguanine-DNA alkyltransferase (ATase) activity or K-ras mutations, and (ii) there was an association between ATase activity and O(6)-MedG levels. Patients with colon tumours and who were homozygous GSTT1(*)2 genotype carriers were more likely than patients who expressed GSTT1 to have their DNA alkylated (83 versus 32%, P=0.03) and to have higher O(6)-MedG levels (0.178+/-0.374 versus 0.016+/-0.023 micromol O(6)-MedG/mol dG, P=0.04) in normal, but not tumour, DNA. No such association was observed between the GSTT1 genotype and the frequency of DNA alkylation or O(6)-MedG levels in patients with benign colon disease or rectal tumours. Patients with colon tumours or benign colon disease who were CYP2D6-poor metabolisers had higher ATase activity in normal tissue than patients who were CYP2D6 extensive metabolisers or CYP2D6 heterozygotes. Patients with the CYP2E1 Dra cd genotype were less likely to have a K-ras mutation: of 55 patients with the wild-type CYP2E1 genotype (dd), 23 had K-ras mutations, whereas none of the 7 individuals with cd genotype had a K-ras mutation (P=0.04). No other associations were observed between GSTT1, GSTM1, CYP2D6 and CYP2E1 Pst genotypes and adduct levels, ATase activity or mutational status. O(6)-MedG levels were not associated with ATase activity in either normal or tumour tissue. However, in 15 patients for whom both normal and tumour DNA contained detectable O(6)-MedG levels, there was a strong positive association between the normal DNA/tumour DNA adduct ratio and the normal tissue/tumour tissue ATase ratio (r(2)=0.66, P=0.001). These results indicate that host factors can affect levels both of the biologically effective dose arising from methylating agent exposure and of a susceptibility factor, the DNA repair phenotype.  相似文献   

5.

Background

The impact of polymorphic cytochrome P450 CYP2D6 enzyme on oxycodone''s metabolism and clinical efficacy is currently being discussed. However, there are only spare data from postoperative settings. The hypothesis of this study is that genotype dependent CYP2D6 activity influences plasma concentrations of oxycodone and its metabolites and impacts analgesic consumption.

Methods

Patients received oxycodone 0.05 mg/kg before emerging from anesthesia and patient-controlled analgesia (PCA) for the subsequent 48 postoperative hours. Blood samples were drawn at 30, 90 and 180 minutes after the initial oxycodone dose. Plasma concentrations of oxycodone and its metabolites oxymorphone, noroxycodone and noroxymorphone were analyzed by liquid chromatography-mass spectrometry with electrospray ionization. CYP2D6 genotyping was performed and 121 patients were allocated to the following genotype groups: PM (poor metabolizer: no functionally active CYP2D6 allele), HZ/IM (heterozygous subjects, intermediate metabolizers with decreased CYP2D6 activity), EM (extensive metabolizers, normal CYP2D6 activity) and UM (ultrarapid metabolizers, increased CYP2D6 activity). Primary endpoint was the genotype dependent metabolite ratio of plasma concentrations oxymorphone/oxycodone. Secondary endpoint was the genotype dependent analgesic consumption with calculation of equianalgesic doses compared to the standard non-CYP dependent opioid piritramide.

Results

Metabolism differed between CYP2D6 genotypes. Mean (95%-CI) oxymophone/oxycodone ratios were 0.10 (0.02/0.19), 0.13 (0.11/0.16), 0.18 (0.16/0.20) and 0.28 (0.07/0.49) in PM, HZ/IM, EM and UM, respectively (p = 0.005). Oxycodone consumption up to the 12th hour was highest in PM (p = 0.005), resulting in lowest equianalgesic doses of piritramide versus oxycodone for PM (1.6 (1.4/1.8); EM and UM 2.2 (2.1/2.3); p<0.001). Pain scores did not differ between genotypes.

Conclusions

In this postoperative setting, the number of functionally active CYP2D6 alleles had an impact on oxycodone metabolism. The genotype also impacted analgesic consumption, thereby causing variation of equianalgesic doses piritramide : oxycodone. Different analgesic needs by genotypes were met by PCA technology in this postoperative cohort.  相似文献   

6.
Drugs and carcinogens are substrates of a group of metabolic enzymes including cytochrome p450 enzymes and gluthatione S-transferases. Many of the genes encoding these enzymes exhibit functional polymorphisms that contribute individual cancer susceptibility and drug response. Molecular studies based on these polymorphic enzymes also explain the aetiology of cancer and therapeutic management in clinics. We analysed the cytochrome p4501A1 (CYP1A1) and 2D6 (CYP2D6) variant genotype and allele frequencies by PCR-RFLP in Turkish individuals (n=140). The frequency of the CYP1A1*2A mutant allele was found to be 15.4%, and the CYP2D6*3 and *4 mutant allele (poor metabolizer) frequencies were 2.5% and 13.9%, respectively. This study presents the first results of CYP1A1 and CYP2D6 mutant allele distributions in the Turkish population and these data provide an understanding of epidemiological studies that correlate therapeutic approaches and aetiology of several types of malignancy in Turkish patients.  相似文献   

7.
Although the efficacy of methadone maintenance treatment (MMT) in opioid dependence disorder has been well established, the influence of methadone pharmacokinetics in dose requirement and clinical outcome remains controversial. The aim of this study is to analyze methadone dosage in responder and nonresponder patients considering pharmacogenetic and pharmacokinetic factors that may contribute to dosage adequacy. Opioid dependence patients (meeting Diagnostic and Statistical Manual of Mental Disorders, [4(th) Edition] criteria) from a MMT community program were recruited. Patients were clinically assessed and blood samples were obtained to determine plasma concentrations of (R,S)-, (R) and (S)-methadone and to study allelic variants of genes encoding CYP3A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, and P-glycoprotein. Responders and nonresponders were defined by illicit opioid consumption detected in random urinalysis. The final sample consisted in 105 opioid dependent patients of Caucasian origin. Responder patients received higher doses of methadone and have been included into treatment for a longer period. No differences were found in terms of genotype frequencies between groups. Only CYP2D6 metabolizing phenotype differences were found in outcome status, methadone dose requirements, and plasma concentrations, being higher in the ultrarapid metabolizers. No other differences were found between phenotype and responder status, methadone dose requirements, neither in methadone plasma concentrations. Pharmacokinetic factors could explain some but not all differences in MMT outcome and methadone dose requirements.  相似文献   

8.
CYP2D6 belongs to the cytochrome P450 superfamily of enzymes and plays an important role in the metabolism of 20-25% of clinically used drugs including antidepressants. It displays inter-individual and inter-ethnic variability in activity ranging from complete absence to excessive activity which causes adverse drug reactions and toxicity or therapy failure even at normal drug doses. This variability is due to genetic polymorphisms which form poor, intermediate, extensive or ultrarapid metaboliser phenotypes. This study aimed to determine CYP2D6 alleles and their frequencies in the United Arab Emirates (UAE) local population. CYP2D6 alleles and genotypes were determined by direct DNA sequencing in 151 Emiratis with the majority being psychiatric patients on antidepressants. Several new alleles have been identified and in total we identified seventeen alleles and 49 genotypes. CYP2D6*1 (wild type) and CYP2D6*2 alleles (extensive metaboliser phenotype) were found with frequencies of 39.1% and 12.2%, respectively. CYP2D6*41 (intermediate metaboliser) occurred in 15.2%. Homozygous CYP2D6*4 allele (poor metaboliser) was found with a frequency of 2% while homozygous and heterozygous CYP2D6*4 occurred with a frequency of 9%. CYP2D6*2xn, caused by gene duplication (ultrarapid metaboliser) had a frequency of 4.3%. CYP2D6 gene duplication/multiduplication occurred in 16% but only 11.2% who carried more than 2 active functional alleles were considered ultrarapid metabolisers. CYP2D6 gene deletion in one copy occurred in 7.5% of the study group. In conclusion, CYP2D6 gene locus is heterogeneous in the UAE national population and no significant differences have been identified between the psychiatric patients and controls.  相似文献   

9.
The debrisoquine-4-hydroxylase polymorphism is a genetic variation in oxidative drug metabolism characterized by two phenotypes, the extensive metabolizer (EM) and poor metabolizer (PM). Of the Caucasian populations of Europe and North America, 5%-10% are of the PM phenotype and are unable to metabolize debrisoquine and numerous other drugs. The defect is caused by several mutant alleles of the CYP2D6 gene, two of which are detected in about 70% of PMs. We have constructed a genomic library from lymphocyte DNA of an EM positively identified by pedigree analysis to be homozygous for the normal CYP2D6 allele. The normal CYP2D6 gene was isolated; was completely sequenced, including 1,531 and 3,522 bp of 5' and 3' flanking DNA, respectively; and was found to contain nine exons within 4,378 bp. Two other genes, designated CYP2D7 and CYP2D8P, were also cloned and sequenced. CYP2D8P contains several gene-disrupting insertions, deletions, and termination codons within its exons, indicating that this is a pseudogene. CYP2D7, which is just downstream of CYP2D8P, is apparently normal, except for the presence, in the first exon, of an insertion that disrupts the reading frame. A hypothesis is presented that the presence of a pseudogene within the CYP2D subfamily transfers detrimental mutations via gene conversions into the CYP2D6 gene, thus accounting for the high frequency of mutations observed in the CYP2D6 gene in humans.  相似文献   

10.
Polymorphic CYP2D6 is the enzyme that activates the opioid analgesic tramadol by O-demethylation to its active metabolite O-demethyltramadol (M1). Our objective was to determine the opioid effects measured by pupillary response to tramadol of CYP2D6 genotyped volunteers in relation to the disposition of tramadol and M1 in plasma. Tramadol displayed phenotypic pharmacokinetics and it was possible to identify poor metabolizers (PM) with >99% confidence from the metabolic ratio (MR) in a single blood sample taken between 2.5 and 24 h post-dose. Homozygous extensive metabolizers (EM) differed from PM subjects by an almost threefold greater (P=0.0014) maximal pupillary constriction (Emax). Significant correlations between the AUC and Cmax values of M1 versus pupillary constriction were found. The corresponding correlations of pharmacokinetic parameters for tramadol itself were weaker and negative. The strongest correlations were for the single-point metabolic ratios at all sampling intervals versus the effects, with rs ranging from 0.85 to 0.89 (p<0.01). It is concluded that the concept of dual opioid/non-opioid action of the drug, though considerably stronger in EMs, is valid for both EM and PM subjects. This is the theoretical basis for the frequent use and satisfactory efficacy of tramadol in clinical practice when given to genetically non-selected population.  相似文献   

11.
Chau TK  Marakami S  Kawai B  Nasu K  Kubota T  Ohnishi A 《Life sciences》2000,67(14):1719-1724
This study was conducted to assess whether the genotypic frequency of Smephenytoin 4'-hydroxylase CYP2C19 gene differs in Japanese cirrhotic patients who developed hepatocellular carcinoma. Thirty-eight patients with cirrhosis were studied. The wild-type allele CYP2C19*1 and the two mutated alleles, CYP2C19*2 and CYP2C19*3, were identified by PCR-RFLP method. Individuals with homozygous CYP2C19*2 or CYP2C19*3 mutation and those with CYP2C19*2 and CYP2C19*3 heterozygous mutation were predicted to be the poor metabolizer (PM) phenotype. The overall frequency of PM predicted from the genotyping analysis was 29% (11 of the 38 patients), consisting of 5 patients homozygous for CYP2C19*2, two homozygous for CYP2C19*3 and four heterozygous for the two defects. Among 24 HCV-seropositive patients with cirrhosis and hepatocellular carcinoma, the frequency of PM was 41.7% and significantly higher than that observed in 186 healthy controls. We postulate that the PM phenotype caused by the mutation of CYP2C19 gene in cirrhotic patients with HCV infection is associated with a high risk for developing hepatocellular carcinoma.  相似文献   

12.
The polymorphic human cytochrome P450 2A6 (CYP2A6) metabolises a number of drugs, activates a variety of precarcinogens and constitutes the major nicotine C-oxidase. A relationship between CYP2A6 genotype and smoking habits, as well as incidence of lung cancer, has been proposed. Two defective alleles have hitherto been identified, one of which is very common in Asian populations. Among Caucasians, an additional defective and frequently distributed allele (CYP2A6*3) has been suggested to play a protective role against nicotine addiction and cigarette consumption. Here, we have re-evaluated the genotyping method used for the CYP2A6*3 allele and found that a gene conversion in the 3' flanking region of 30-40% of CYP2A6*1 alleles results in genotype misclassification. In fact, no true CYP2A6*3 alleles were found among 100 Spaniards and 96 Chinese subjects. In one Spanish poor metaboliser of the CYP2A6 probe drug coumarin, we found two novel defective alleles. One, CYP2A6*5, encoded an unstable enzyme having a G479L substitution and the other was found to carry a novel type of CYP2A6 gene deletion (CYP2A6*4D). The results imply the presence of numerous defective as well as active CYP2A6 alleles as a consequence of CYP2A6/CYP2A7 gene conversion events. We conclude that molecular epidemiological studies concerning CYP2A6 require validated genotyping methods for accurate detection of all known defective CYP2A6 alleles.  相似文献   

13.
14.
目的:研究CYP11B2-344C/T(醛固酮合成酶)及ACEI/D(血管紧张素转化酶)基因多态性与慢性心力衰竭(CHF)患者实施ACEI治疗后出现醛固酮脱逸表现的关系。方法:回顾分析2008年10月至2012年10月我科收治的252例CHF患者,全部患者应用ACEI治疗3月,醛固酮在基线以上为醛固酮脱逸,依据此标准将患者分为研究组(脱逸组,n=86)与对照组(非脱逸组,n=166),依据PCR(聚合酶链反应)及RFLP(片段长度限制多态性)等方法分别检测两组CYP11B2及ACE基因型,比较两组基因型频率的分布。结果:252例患者中,共86例出现醛固酮脱逸,发生率为34.1%。全部受试患者CYP11B2基因型及ACE基因型频率与Weinberg-Hardy平衡均相符(P均0.05)。研究组ACE I/D三种基因型的组间分布与对照组相较,无统计学差异(P0.05);CYP11B2基因TT型的频率与对照组相较,呈明显统计学差异(P0.05),等位基因C/T频率的组间分布同对照组相较,亦呈明显差异(P0.05)。研究组ACEI/D的基因多态性及CYP11B2-344C/T的多态性中,基因型联合组间分布与对照组相较,无统计学差异(P0.05)。结论:ACE基因多态性与CHF患者ACEI治疗后出现醛固酮脱逸无关,CYP11B2基因T等位基因及TT基因型多态性可能是CHF患者ACEI治疗后发生醛固酮脱逸的高危因素。醛固酮脱逸时,ACE、CYP11B2基因不具有协同效果。  相似文献   

15.
There is growing consensus on the potential use of pharmacogenetics in clinical practice, and hopes have been expressed for application to the improvement of global health. However, two major challenges may lead to widening the "biotechnological gap" between the developing and the industrial world;first the unaffordability of some current technologies for poorer countries, and second the necessity of analyzing all described alleles for every clinical case due to the inability to predict the ethnic group of a given patient. Because of its role in the metabolism of a number of drugs, cytochrome P450 2D6 (CYP2D6) is an excellent candidate for use in the optimization of drug therapy. CYP2D6 is a highly polymorphic gene locus with more than 50 variant alleles, and subjects can be classified as poor metabolizers (PM), extensive metabolizers (EM), or ultrarapid metabolizers (UM) of a given CYP2D6 substrate. Several strategies and methods for CYP2D6 genotyping exist. Some, however, are expensive and laborious. The aim of this study was to design a PCR-based genotyping methodology to allow rapid, straightforward, and inexpensive identification of 90%-95% of CYP2D6 PM or UM genotypes for routine clinical use, independent of the individual's ethnic group. CYP2D6 is amplified in initial extra long PCRs (XL-PCRs), which subsequently undergo fragment-length polymorphism analysis for the determination of carriers of CYP2D6 allelic variants. The same XL-PCRs are also used for the determination of CYP2D6 multiplication and 2D6*5 allele (abolished activity). The application of this new strategy for the detection of CYP2D6 mutated alleles and multiplications to routine clinical analysis will enable the PM and UM phenotypes to be predicted and identified at a reasonable cost in a large number of individuals at most locations.  相似文献   

16.
17.
The debrisoquine/sparteine polymorphism is associated with a clinically important genetic deficiency of oxidative drug metabolism. From 5% to 10% of Caucasians designated as poor metabolizers (PMs) of the debrisoquine/sparteine polymorphism have a severely impaired capacity to metabolize more than 25 therapeutically used drugs. The impaired drug metabolism in PMs is due to the absence of cytochrome P450IID6 protein. The gene controlling the P450IID6 protein, CYP2D6, is located on the long arm of chromosome 22. A pseudogene CYP2D8P and a related gene CYP2D7 are located upstream from CYP2D6. This gene locus is highly polymorphic. After digestion of genomic DNA with XbaI endonuclease, restriction fragments of 11.5 kb and 44 kb represent mutant alleles of the cytochrome CYP2D6 gene locus associated with the PM phenotype. In order to elucidate the molecular mechanism of the mutant allele reflected by the XbaI 11.5-kb fragment, a genomic library was constructed from leukocyte DNA of one individual homozygous for this fragment and screened with the human IID6 cDNA. The CYP2D genes were isolated and characterized by restriction mapping and partial sequencing. We demonstrate that the mutant 11.5-kb allele results from a deletion involving the entire functional CYP2D6 gene. This result provides an explanation for the total absence of P450IID6 protein in the liver of these PMs.  相似文献   

18.
The AmpliChip CYP450 Test, which analyzes patient genotypes for cytochrome P450 (CYP) genes CYP2D6 and CYP2C19, is a major step toward introducing personalized prescribing into the clinical environment. Interest in adverse drug reactions (ADRs), the genetic revolution, and pharmacogenetics have converged with the introduction of this tool, which is anticipated to be the first of a new wave of such tools to follow over the next 5-10 years. The AmpliChip CYP450 Test is based on microarray technology, which combines hybridization in precise locations on a glass microarray and a fluorescent labeling system. It classifies individuals into two CYP2C19 phenotypes (extensive metabolizers [EMs] and poor metabolizers [PMs]) by testing three alleles, and into four CYP2D6 phenotypes (ultrarapid metabolizers [UMs], EMs, intermediate metabolizers [IMs], and PMs) by testing 27 alleles, including seven duplications. CYP2D6 is a metabolic enzyme with four activity levels (or phenotypes): UMs with unusually high activity; normal subjects, known as EMs; IMs with low activity; and PMs with no CYP2D6 activity (7% of Caucasians and 1-3% in other ethnic groups). Levels of evidence for the association between CYP2D6 PMs and ADRs are relatively reasonable and include systematic reviews of case-control studies of some typical antipsychotics and tricyclic antidepressants (TCAs). Evidence for other phenotypes is considerably more limited. The CYP2D6 PM phenotype may be associated with risperidone ADRs and discontinuation due to ADRs. Venlafaxine, aripiprazole, duloxetine, and atomoxetine are newer drugs metabolized by CYP2D6 but studies of the clinical relevance of CYP2D6 genotypes are needed. Non-psychiatric drugs metabolized by CYP2D6 include metoprolol, tamoxifen, and codeine-like drugs. CYP2C19 PMs (3-4% of Caucasians and African Americans, and 14-21% of Asians) may require dose adjustment for some TCAs, moclobemide, and citalopram. Other drugs metabolized by CYP2C19 are diazepam and omeprazole. The future of pharmacogenetics depends on the ability to overcome serious obstacles, including the difficulties of conducting and publishing studies in light of resistance from grant agencies, pharmaceutical companies, and some scientific reviewers. Assuming more studies are published, pharmacogenetic clinical applications may be compromised by economic factors and the lack of physician education. The combination of a US FDA-approved test, such as the AmpliChip CYP450 Test, and an FDA definition of CYP2D6 as a 'valid biomarker' makes CYP2D6 genotyping a prime candidate to be the first successful pharmacogenetic test in the clinical environment. One can use microarray technology to test for hundreds of single nucleotide polymorphisms (SNPs) but, taking into account the difficulties for single gene approaches such as CYP2D6, it is unlikely that very complex pharmacogenetic approaches will reach the clinical market in the next 5-10 years.  相似文献   

19.

Introduction

The efficacy of treatment with selective serotonin reuptake inhibitors in patients with major depressive disorder (MDD) can differ depending on the patient''s serotonin transporter-linked polymorphic region (5-HTTLPR) genotype, and the effects of varying plasma concentrations of drugs can also vary. We investigated the association between the paroxetine plasma concentration and clinical response in patients with different 5-HTTLPR genotypes.

Methods

Fifty-one patients were enrolled in this study. The Montgomery-Asberg Depression Rating Scale (MADRS) was used to evaluate patients at 0, 1, 2, 4, and 6 weeks. The patients'' paroxetine plasma concentrations at week 6 were measured using high-performance liquid chromatography. Additionally, their 5-HTTLPR polymorphisms (alleles S and L) were analyzed using a polymerase chain reaction with specific primers. We divided the participants into two groups based on their L haplotype: the SS group and the SL and LL group. We performed single and multiple regression analyses to investigate the associations between MADRS improvement and paroxetine plasma concentrations or other covariates for each group.

Results

There were no significant differences between the two groups with regard to demographic or clinical data. In the SS group, the paroxetine plasma concentration was significantly negatively correlated with improvement in MADRS at week 6. In the SL and LL group, the paroxetine plasma concentration was significantly positively correlated with improvement in MADRS at week 6 according to the results of the single regression analysis; however, it was not significantly correlated with improvement in MADRS at week 6 according to the results of the multiple regression analysis.

Conclusion

Among patients with MDD who do not respond to paroxetine, a lower plasma concentration or a lower oral dose of paroxetine might be more effective in those with the SS genotype, and a higher plasma concentration might be more effective in those with the SL or LL genotype.  相似文献   

20.
This case-control study was conducted to examine the association between the CYP1A1 and CYP2D6 genotypes and lung cancer risk among North Indians. The estimated relative risk for lung cancer associated with the CYP1A1 Val/Val allele was 2.68, and was four-fold when cases with small cell lung cancer (SCLC) were considered alone. With regard to the metabolism of debrisoquine, no poor metabolizers were found amongst the subjects. The odds ratio of risk with the heterozygous extensive metabolizer (HEM) genotype was 1.5. However, in the presence of at least a single copy of the variant CYP1A1 MspI allele and the CYP2D6 HEM genotype, the risk was two-fold for squamous cell carcinoma (SQCC). When the CYP1A1 Val/Val and CYP2D6 HEM genotypes were taken together, the risk for SCLC was four-fold. Stratified analysis indicated an interaction between bidi smoking and variant CYP1A1 genotypes on the risk for SQCC and SCLC. Heavy smokers (Brinkman index>400) with Val/Val genotypes were at a very high risk of developing lung cancer (odds ratio 29.30, 95% confidence interval 2.42-355, p=0.008). Heavy smokers with CYP1A1 MspI (CYP1A1*1/2A or CYP1A1*2A/*2A) genotype had a seven-fold risk for SCLC compared with non-smokers. This study is the first to be carried out on a North Indian population, and, although small, suggests that CYP1A1 and CYP2D6 polymorphisms might have a role in determining the risk for lung cancer and should be investigated further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号