首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
大鼠高血压相关基因表达蛋白抑制血管平滑肌细胞增殖   总被引:8,自引:0,他引:8  
大鼠高血压相关基因 ( r HRG- 1 )编码一新细胞内信号传递蛋白 .体外转染 r HRG- 1表达蛋白发现 r HRG- 1表达蛋白能抑制自发性高血压大鼠血管平滑肌细胞内 Raf蛋白 ( Raf- 1 )和丝裂素活化蛋白激酶 ( MAPK)活性 ,抑制抗细胞凋亡基因 ( bcl- 2 )和增殖细胞核抗原 ( PCNA)基因 m RNA表达 ,同时还抑制该细胞 DNA的合成 .r HRG- 1是一正常血压大鼠血管平滑肌细胞内高度表达的基因 ,由此推测在自发性高血压大鼠血管平滑肌细胞内转染 r HRG- 1表达蛋白抑制其细胞 DNA合成的作用可能是抑制细胞内 Raf- 1活性与 MAPK活性及抑制 PCNA和 bcl- 2基因表达的结果  相似文献   

13.
14.
Transcriptional control of the rat alpha 1-acid glycoprotein gene   总被引:2,自引:0,他引:2  
  相似文献   

15.
16.
Rat vascular smooth muscle cells (SMC) in culture synthesize and secrete a approximately 38,000-Mr protein doublet or triplet that, as previously described (Majack and Bornstein. 1984. J. Cell Biol. 99:1688-1695), rapidly and reversibly accumulates in the SMC culture medium upon addition of heparin. In the present study, we show that this approximately 38,000-Mr heparin-regulated protein is electrophoretically and immunologically identical to apolipoprotein E (apo-E), a major plasma apolipoprotein involved in cholesterol transport. In addition, we show that expression of apo-E by cultured SMC varies according to growth state: while proliferating SMC produced little apo-E and expressed low levels of apo-E mRNA, quiescent SMC produced significantly more apo-E (relative to other proteins) and expressed markedly increased levels of apo-E mRNA. Northern analysis of RNA extracted from aortic tissue revealed that fully differentiated, quiescent SMC contain significant quantities of apo-E mRNA. These data establish aortic SMC as a vascular source for apo-E and suggest new functional roles for this apolipoprotein, possibly unrelated to traditional concepts of lipid metabolism.  相似文献   

17.
18.
19.
We compared the effects of endothelial-synthesized matrix and purified matrix molecules on pericyte (PC) and aortic smooth muscle cell (SMC) growth, heparin sensitivity, and contractile phenotype in vitro. When PC are plated on endothelial-synthesized (EC) matrix, cell number is, on average, 3.1-fold higher than identical populations grown on plastic. Under the same conditions, SMC proliferation is stimulated 1.6-fold. Purified matrix molecules, such as collagen type IV (COLL) or fibronectin (FN), both major components of the EC matrix, stimulate PC/SMC growth 1.2–1.7-fold. Heparin (100 μg/ml), which inhibits the growth of early passage SMC by 60%, inhibits PC growth ~50%, when cells were plated on plastic. However, PC plated on EC matrix in the presence of heparin (100 μg/ml) grow as well as parallel cultures grown on plastic (in the absence of heparin). Concomitant with matrix-stimulated proliferation, we observed a marked reduction in PC containing alpha vascular smooth muscle actin (αVSMA), as seen by immunofluorescence using affinity-purified antibodies (173/615 positive pericytes on DOC matrix (28%) vs. 221/285 (77%) positive on glass). SMC respond similarly. Whereas αVSMA protein is markedly altered when PC and SMC are cultured on EC matrix, similar reductions in mRNA are not observed. However, Northern blotting does reveal that PC contain 17–30 times the steady-state levels of αVSMA mRNA compared to SMC. When SMC and PC cultures on plastic are treated with heparin, the steady-state levels of vascular smooth muscle actin mRNA increase 5 and 1.5 fold, respectively. Similarly, heparin treatment of PC grown on plastic induces a 1.8 fold increase in nonmuscle actin mRNA. These heparin-induced alterations in isoactin mRNA levels are not seen when PC are cultured on EC matrix. We also observed reductions in αVSMA and β actin mRNA levels when PC are plated on FN, where they maintain a ratio of 13:1 (α:β). Similar ratios are found in SMC present in rat and bovine aortae in vivo. These steady-state isoactin mRNA ratios are slightly different from those seen in cultured PC (8–10:1; α:β). These results suggest that selective synthesis and remodelling of the endothelial basal lamina may signal alterations in pericyte growth and contractile phenotype during normal vascular morphogenesis, angiogenesis, or during the microvascular remodelling that accompanies hypertensive onset. © 1993 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号