首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
最近的研究证明在叶绿体内过量表达甲基营养细菌RuMP中固定HCHO的关键酶6-磷酸己酮糖合成酶(HPS)和6-磷酸果糖异构酶(PHI)的融合蛋白HPS-PHI可以在转基因天竺葵中构建一条甲醛光合同化途径从而提高植物对甲醛的同化和脱毒能力。甲醇氧化酶(AOD1)是甲基营养型酵母甲醇代谢途径的第一个关键酶,可催化甲醇氧化为甲醛。在烟草叶绿体中过量表达AOD1或/和HPS-PHI产生过量表达AOD1(AO)、HPS-PHI(AB)、同时过量表达AOD1和HPS-PHI(AA)的转基因烟草。用2和6mmoL/L(13)CH_3OH处理3种转基因烟草和野生型烟草(WT),(13)CH_3OH处理3种转基因烟草和野生型烟草(WT),(13)CNMR分析表明AO植株中积累的H(13)CNMR分析表明AO植株中积累的H(13)COOH最多,[U-(13)COOH最多,[U-(13)C]Gluc和[U-(13)C]Gluc和[U-(13)C]Fruc的生成量在AO和WT间无显著差异,在AA和AB中的产生量显著高于AO和WT,且在AA中的生成量又高于AB,这种差异在6mmol/L(13)C]Fruc的生成量在AO和WT间无显著差异,在AA和AB中的产生量显著高于AO和WT,且在AA中的生成量又高于AB,这种差异在6mmol/L(13)CH_3OH处理植株中比2 mmol/L更为明显。这些结果证实在叶绿体中过表达AOD1增加烟草氧化甲醇为甲酸的能力,同时过量表达AOD1和HPS-PHI在烟草中成功地构建一个甲醇光合同化途径,提高烟草同化甲醇为糖类物质的能力。  相似文献   

2.
为了考察甲醇或乙醇促进植物生长与赤霉素(GA)的合成关系,该研究在MS固体培养基中培养并添加外源GA和GA合成抑制剂多效唑(PAC),分析其对2mmol/L甲醇或乙醇促进烟草生长的影响及GA合成调控转录因子RSG(for repression of shoot growth)应答甲醇或乙醇刺激的分子机理。结果显示:(1)外源添加GA可增强甲醇或乙醇对烟草生长的刺激作用,而添加PAC却抑制甲醇和乙醇对烟草生长的刺激作用。(2)14-3-3蛋白与RSG结合抑制RSG进入细胞核及其转录调控活性;甲醇和乙醇诱导烟草14-3-3基因的转录和表达,对RSG蛋白表达也有诱导作用。(3)甲醇和乙醇可降低14-3-3蛋白与RSG的相互作用,同时增强RSG与GA20ox1启动子的结合。研究表明,甲醇和乙醇刺激烟草的生长可能通过增加RSG表达,且减弱RSG与14-3-3蛋白的结合来增加RSG细胞核定位作用,从而增强RSG与GA20ox1启动子的结合,最终增加GA的合成,从而促进烟草的生长,这可能是甲醇和乙醇促进烟草生长的一种重要的分子机制。  相似文献   

3.
KCN(2mol/L),antimycinA(2.7μmol/L),NaN3(6mmol/L)和SHAM(salicylhydroxamicacid,5mmol/L)分别降低小麦芽中的BADH基因表达约40%,41%,46%和22.0%,而ATP,ADP分别增加BADH基因表达约33%和34%,DNP(2,4-dinitrophenol,1mmol/L)降低BADH基因表达约30%。这些结果表明,正常运转的末端氧化途径所形成的高能化合物对BADH基因表达是重要和必需的,细胞色素途径比交替途径对BADH基因表达有更大的影响。这是首次对“多条路线”假说关于呼吸代谢调节植物基因表达的观点提供直接的证据。  相似文献   

4.
怀牛膝细胞悬浮培养及多糖含量变化的研究   总被引:2,自引:0,他引:2  
采用正交实验设计研究基本培养基、碳源、2,4-D、6-BA、CH及接种量对怀牛膝悬浮培养细胞生长和细胞中多糖含量的影响。结果表明,(1)6-BA是影响怀牛膝细胞生长的关键因子,其影响效应依次为6-BA>CH>接种量>基本培养基>2,4-D>碳源,细胞生长的适宜培养基为MS 30 g/L葡萄糖 2 mg/L 2,4-D 1 mg/L 6-BA 0.5 g/L CH,适宜接种量为30 g/L。(2)碳源是影响细胞中多糖含量的关键因子,其影响效应依次为:碳源>2,4-D>6-BA>CH>接种量>基本培养基,利于细胞中多糖含量提高的适宜培养基为:LS 30 g/L蔗糖 0.5 mg/L 6-BA 0.5 g/L CH,适宜接种量为30 g/L。  相似文献   

5.
KCN(2mol/L),antimycinA(2.7μmol/L),NaN3(6mmol/L)和SHAM(salicylhydroxamicacid,5m,mol/L)分别降低小麦芽中的BADH基因表达约40%,41%,46%和22.0%,而ATP,ADP分别增加BADH基因表达约33%和34%,DNP(2,4-dinitrophenol,1mmol/L)降低BADH基因表达约30%,这些结果表明,正常运转的末端氧化途径所形成的高能化合物对BADH基因表达是重要和必需的,细胞色素途径比交替途径对BADH基因表达有更大的影响。这是首次对“多条路线”假说关于呼吸代谢调节植物基因表达的观点提供直接的证据。  相似文献   

6.
为明确氮素浓度和形态与木薯花青素产生和积累的关系,基于氮素胁迫能够在拟南芥等植物中促进花青素产生的研究结果,以木薯品种Arg7为研究对象,研究木薯无菌幼苗在添加了(1)40 mmol/L NO3-+ 20 mmol/L NH4+,(2)40 mmol/L NO3-,(3)20 mmol/L NH4+,(4)0.4 mmol/L NO3-+ 0.2 mmol/L NH4+,(5)0.4 mmol/L NO3-,(6)0.2 mmol/L NH4+,(7)1 mmol/L(N),(8)5 mmol/L(N),(9)9 mmol/L(N),(10)13 mmol/L(N)10种氮素浓度和形态的MS培养基中生长40 d的农艺性状,以及对花青素合成相...  相似文献   

7.
很多研究发现常春藤(H.helix)能吸收甲醛(HCHO),对常春藤气体HCHO吸收能力分析表明常春藤能有效清除空气中污染的气体甲醛.13CNMR分析发现用高浓度气体H13CHO处理常春藤,在叶片中出现的主要代谢中间产物为13CH3OH、[[5-13C]Met、U-13C]Gluc、[U-13C]Fruc、[3-13C]Ser、[2-13C]Gly、[5-13C]Arg、[3-13C]Ala、[4-13C]malate、[3-13C]malate及少量的[2-13C]Ser和H13COOH.此外,在气体H13CHO处理短时间的叶片抽提物中有游离H13CHO和甲醛加合物H13CHO-Gln,证实H13CHO确实被吸收到叶片细胞中,随着处理时间的增加这两个峰消失,说明通过自身的代谢作用H13CHO被有效清除.在气体甲醛胁迫下,常春藤叶片丙二醛、过氧化氢和羰基化蛋白质的含量升高,说明甲醛胁迫在常春藤叶片里诱发了氧化损伤,从而使叶片气孔传导率下降,甲醛吸收速率和效率减小.  相似文献   

8.
甲醇是一种重要的有机化工原料,价格低廉,碳还原度高,在生物化工中是糖质原料的理想替代原料。但是常用的工业微生物宿主如大肠杆菌不能利用甲醇作为碳源,这限制了甲醇在生物化工领域的应用。通过表达甲醇脱氢酶、3-己酮糖-6-磷酸合成酶和6-磷酸-3-己酮糖异构酶在大肠杆菌中构建可同化甲醇的核酮糖单磷酸途径。以基因工程菌作为出发菌株,通过连续传代和定向进化引入随机突变,突变株进行以甲醇为碳源的压力筛选,得到了2株可以利用甲醇生长的突变株。在以甲醇为辅助碳源的培养基中,25113Δfrm A/p ZWM1-13号突变株较原始菌株25113Δfrm A/p ZWM1菌体生长量增加27.6%。对25113Δfrm A/p ZWM1-13号突变株进行~(13)C示踪分析检测蛋白质合成氨基酸,结果表明氨基酸中~(13)C比例有明显提高。其中,甲硫氨酸~(13)C标记含量增加7.236%。因此,定向进化有效地提高了基因工程大肠杆菌的甲醇利用效率。  相似文献   

9.
目的:对毕赤嗜甲醇酵母工程菌inu-26高密度培养表达黑曲霉菊粉内切酶的条件进行优化,找出最佳的外源蛋白表达条件。方法:在摇瓶优化培养的基础上进行发酵罐高密度培养,优化最佳产酶条件。结果:以葡萄糖为碳源、微量元素添加量100~200mL/L、甲醇浓度1g/L、pH6.0~7.0、诱导时间96h时酶的表达量最高;摇瓶模拟高密度培养表明影响酵母生长的最主要因素葡萄糖和硫酸铵的最佳浓度分别为20~45和11.5g/L;利用培养基F1进行高密度培养优于其他培养基,工程菌生长符合指数生长曲线,细胞生长延迟期为1.36h,比生长速率μ为0.4846h-1。结论:以葡萄糖为碳源,采用葡萄糖-甲醇混合诱导和100%甲醇单一诱导相结合,在菌体鲜重约为280g/L时连续诱导96h,菌体生长良好,不会出现自溶,且酶的表达量最高,为摇瓶培养的3倍多,酶活最高可达540 U/mL。  相似文献   

10.
研究在重组毕赤酵母(GS115,Mut+)表达猪圆环病毒Cap蛋白的发酵过程中,甲醇毒害作用以及溶氧波动影响目的蛋白的正常表达。基于对甲醇和山梨醇代谢途径的分析,将C源流加的手动调节与反馈控制相结合,提出了1种新型的甲醇/山梨醇共混诱导策略,能够将溶氧稳定地控制于某一设定值,同时避免甲醇毒害作用。使用该策略将溶氧控制于20%的批次,C源(甲醇和山梨醇)添加过少,导致Cap蛋白表达量较低(54 mg/L);而将溶氧控制于10%的批次,C源流加速率适宜,Cap蛋白表达量达到198 mg/L,表达水平明显高于采用传统甲醇诱导策略(0 mg/L)和DO-stat诱导策略的批次(121 mg/L)。  相似文献   

11.
Bi-directional translocation and degradation of Arginine (Arg) along the arbuscular mycorrhizal (AM) fungal mycelium were testified through 15N and/or 13C isotopic labeling. In vitro mycorrhizas of Glomus intraradices and Ri T-DNA-transformed carrot roots were grown in dual compartment Petri dishes. [15N- and/or13C]Arg was supplied to either the fungal compartment or the mycorrhizal compartment or separate dishes containing the uncolonized roots. The levels and labeling of free amino acids (AAs) in the mycorrhizal roots and in the extraradical mycelia(ERM) were measured by gas chromatography/mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). The ERM of AM fungi exposed in either NH4 + or urea as sole external nitrogen source had much higher 15N enrichment of Arg, compared with those in nitrate or exogenous Arg; however, glycerol supplied as an external carbon source to the ERM had no significant effect on the level of Arg in the ERM. Meanwhile, Arg biosynthesized in the ERM could be translocated intact to the mycorrhizal roots and thereby the level of Arg in the mycorrhizal roots increased to about 20% after culture of ERM in 4 mmol/L NH4 + for 6 weeks. Also Arg was found to be bi-directionally transported along the AM fungal mycelium through [U-13C]Arg labeling either in the mycorrhizal compartment or in the fungal compartment. Once Arg was translocated to the potential N-limited sites, it would be further degraded into ornithine (Orn) and urea since either [U-13C] or [U-15N/U-13C]Orn was apparently shown up in the mycorrhizal root tissues when [U-13C] or [U-15N/U-13C]Arg was labeled in the fungal compartment, respectively. Evidently Orn formation indicated the ongoing activities of Arg translocation and degradation through the urea cycle in AM fungal mycelium. Supported by Science and Technology Department of Zhejiang Province (Grant No. 2006C22009).  相似文献   

12.
Experiments were performed to reveal the extent to which individual heterotrophic substrates of a mixture contribute to the overall carbon and energy metabolism. For this reason Hansenula polymorpha MH 20 was chemostatically (C-limited) cultivated at different growth rates on mixtures of methanol and glucose fed at proportions of 3:1 and 1:3 (in weight units), respectively. The distributions of 14C-carbon from methanol in biomass as well as carbon dioxide (and supernatant) fractions were determined. From these results it followed, firstly, that energy derived from methanol dissimilation was used in part for the incorporation of glucose carbon, resulting in carbon conversion efficiencies for this substrate equivalent to yield coefficients of 0.61–0.69 g/g. Secondly, the growth yield data revealed that the efficiency of methanol conversion had to be increased in order to account for the experimentally determined yield figures. This was further confirmed by theoretical treatment of the growth yield data which showed that these could only be obtained if P/O-quotients for methanol conversion similar to those for glucose, i.e. 2.0–2.5, were considered. The latter property was regarded as the main reason for the observed improvement of growth yield accompanying the simultaneous utilization of methanol and glucose in this yeast.Abbreviations ATPM,a ATP required for incorporation of assimilated methanol at a given P/O-quotient - ATPM,d ATP generated from dissimilated methanol at a given P/O-quotient - G and M glucose and methanol; respectively (the indices u, a, d and e mean utilized, assimilated, dissimilated and incorporated by excess energy, respectively) - PGA 3-phosphoglyceric acid - Y G app apparent growth yield on glucose in presence of methanol - Y G P/O theoretical growth yield on glucose at a given P/O-quotient  相似文献   

13.
Pichia pastoris has become one of the major microorganisms for the production of proteins in recent years. This development was mainly driven by the readily available genetic tools and the ease of high‐cell density cultivations using methanol (or methanol/glycerol mixtures) as inducer and carbon source. To overcome the observed limitations of methanol use such as high heat development, cell lysis, and explosion hazard, we here revisited the possibility to produce proteins with P. pastoris using glucose as sole carbon source. Using a recombinant P. pastoris strain in glucose limited fed‐batch cultivations, very high‐cell densities were reached (more than 200 gCDW L?1) resulting in a recombinant protein titer of about 6.5 g L?1. To investigate the impact of recombinant protein production and high‐cell density fermentation on the metabolism of P. pastoris, we used 13C‐tracer‐based metabolic flux analysis in batch and fed‐batch experiments. At a controlled growth rate of 0.12 h?1 in fed‐batch experiments an increased TCA cycle flux of 1.1 mmol g?1 h?1 compared to 0.7 mmol g?1 h?1 for the recombinant and reference strains, respectively, suggest a limited but significant flux rerouting of carbon and energy resources. This change in flux is most likely causal to protein synthesis. In summary, the results highlight the potential of glucose as carbon and energy source, enabling high biomass concentrations and protein titers. The insights into the operation of metabolism during recombinant protein production might guide strain design and fermentation development. Biotechnol. Bioeng. 2010;107: 357–368. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
The pathway of methanol conversion by a thermophilic anaerobic consortium was elucidated by recording the fate of carbon in the presence and absence of bicarbonate and specific inhibitors. Results indicated that about 50% of methanol was directly converted to methane by the methylotrophic methanogens and 50% via the intermediates H2/CO2 and acetate. The deprivation of inorganic carbon species [(HCO3+CO2)] in a phosphate-buffered system reduced the rate of methanol conversion. This suggests that bicarbonate is required as an electron (H2) sink and as a co-substrate for the efficient and complete removal of the chemical oxygen demand. Nuclear magnetic resonance spectroscopy was used to investigate the route of methanol conversion to acetate in bicarbonate-sufficient and bicarbonate-depleted environments. The proportions of [1,2-13C]acetate, [1-13C]acetate and [2-13C]acetate were determined. Methanol was preferentially incorporated into the methyl group of acetate, whereas HCO3 was the preferred source of the carboxyl group. A small amount of the added H13CO3 was reduced to form the methyl group of acetate and a small amount of the added 13CH3OH was oxidised and found in the carboxyl group of acetate when 13CH3OH was converted. The recovery of [13C]carboxyl groups in acetate from 13CH3OH was enhanced in bicarbonate-deprived medium. The small amount of label incorporated in the carboxyl group of acetate when 13CH3OH was converted in the presence of bromoethanesulfonic acid indicates that methanol can be oxidised to CO2 prior to acetate formation. These results indicate that methanol is converted through a common pathway (acetyl-CoA), being on the one hand reduced to the methyl group of acetate and on the other hand oxidised to CO2, with CO2 being incorporated into the carboxyl group of acetate.  相似文献   

15.
The methanol utilization (Mut) phenotype in the yeast Pichia pastoris (syn. Komagataella spp.) is defined by the deletion of the genes AOX1 and AOX2. The Mut phenotype cannot grow on methanol as a single carbon source. We assessed the Mut phenotype for secreted recombinant protein production. The methanol inducible AOX1 promoter (PAOX1) was active in the Mut phenotype and showed adequate eGFP fluorescence levels and protein yields (YP/X) in small-scale screenings. Different bioreactor cultivation scenarios with methanol excess concentrations were tested using PAOX1HSA and PAOX1vHH expression constructs. Scenario B comprising a glucose-methanol phase and a 72-hr-long methanol only phase was the best performing, producing 531 mg/L HSA and 1631 mg/L vHH. 61% of the HSA was produced in the methanol only phase where no biomass growth was observed, representing a special case of growth independent production. By using the Mut phenotype, the oxygen demand, heat output, and specific methanol uptake (qmethanol) in the methanol phase were reduced by more than 80% compared with the MutS phenotype. The highlighted improved process parameters coupled with growth independent protein production are overlooked benefits of the Mut strain for current and future applications in the field of recombinant protein production.  相似文献   

16.
With choline as carbon source Thiosphaera pantotropha GB17 grew with a doubling time (td) of 6 h. The cellular yield was 55.8 g dry cell weight per mol of choline, indicating that its methyl moieties were used for growth. However, T. pantotropha was unable to grow with methanol or with methylamine as carbon source. Mutants were isolated from liquid or from solid media able to grow with methanol (Mox+) as carbon or methylamine as nitrogen source (Mam+). The Mox+ mutant GB17M grew with a mean td of 11.7h and a growth yield of 8.9 g dry cell weight per mol of methanol. Diauxic growth of strain GB17M was observed with mixtures of pyruvate and methanol as substrates in batch culture. Methanol led to the formation of methanol dehydrogenase, formate dehydrogenase, ribulosebisphosphate carboxylase and of a soluble cytochrome c-551.5. Tn5-insertional mutants defective in the thiosulfate oxidizing enzyme system or in hydrogenase acquired the Mox+ phenotype. However, Tn5-insertional mutants defective in either a c-type cytochrome or the molybdenum cofactor did not mutate to the Mox+ phenotype, indicating common functions in thiosulfate and in methanol metabolism.  相似文献   

17.
Two strains of Methanosarcina (M. Barkeri strain MS, isolated from sewage sludge, and strain UBS, isolated from lake sediments) were found to have similar cellular properties and to have DNA base compositions of 44 mol percent guanosine plus cytosine. Strain MS was selected for further studies of its one-carbon metabolism. M. barkeri grew autotrophically via H2 oxidation/CO2 reduction. The optimum temperature for growth and methanogenesis was 37°C. H2 oxidation proceeded via an F420-dependent NADP+-linked hydrogenase. A maximum specific activity of hydrogenase in cell-free extracts, using methyl viologen as electron acceptor, was 6.0 mol min · mg protein at 37°C and the optimum pH (9.0). M. barkeri also fermented methanol andmethylamine as sole energy sources for growth. Cell yields during growth on H2/CO2 and on methanol were 6.4 and 7.2 mg cell dry weight per mmol CH4 formed, respectively. During mixotrophic growth on H2/CO2 plus methanol, most methane was derived from methanol rather than from CO2. Similar activities of hydrogenase were observed in cell-free extracts from H2/CO2-grown and methanol-grown cells. Methanol oxidation apparently proceeded via carrierbound intermediates, as no methylotrophy-type of methanol dehydrogenase activity was observed in cell-free extracts. During growth on methanol/CO2, up to 48% of the cell carbon was derived from methanol indicating that equivalent amounts of cell carbon were derived from CO2 and from an organic intermediate more reduced than CO2. Cell-free extracts lacked activity for key cell carbon synthesis enzymes of the Calvin cycle, serine path, or hexulose path.Abbreviations CAPS cycloaminopropane sulfonic acid - CH3-SCoM methyl coenzyme M - DCPIP 2,6-dichlorophenolindophenol - DEAE diethylaminoethyl - dimethyl POPOP 1,4-bis-2-(4-mothyl-5-phenyloxazolyl)-benzene - DNA deoxyribonucleic acid - dpm dismtegrations per min - DTT dithiothreitol - EDTA ethylenediamine tetraacetic acid - F420 factor 420 - G+C guanosine plus cytosine - NAD+ nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - PBBW phosphate buffered basal Weimer - PMS phenazine methosulfate - PPO 2,5-diphenyloxazole - rRNA ribosomal ribonucleic acid - RuBP ribulose-1,5-bisphosphate - Tris tris-hydroxymethyl-aminomethane - max maximum specific growth rate  相似文献   

18.
Studies of glycerol metabolism in the heart have largely emphasized its role in triglyceride synthesis. However, glycerol may also be oxidized in the citric acid cycle, and glycogen synthesis from glycerol has been reported in the nonmammalian myocardium. The intent of this study was to test the hypothesis that glycerol may be metabolized to glycogen in mammalian heart. Isolated rat hearts were supplied with a mixture of substrates including glucose, lactate, pyruvate, octanoate, [U-13C3]glycerol, and 2H2O to probe various metabolic pathways including glycerol oxidation, glycolysis, the pentose phosphate pathway, and carbon sources of stored glycogen. NMR analysis confirmed that glycogen production from the level of the citric acid cycle did not occur and that the glycerol contribution to oxidation in the citric acid cycle was negligible in the presence of alternative substrates. Quite unexpectedly, 13C from [U-13C3]glycerol appeared in glycogen in carbon positions 4–6 of glucosyl units but none in positions 1–3. The extent of [4,5,6-13C3]glucosyl unit enrichment in glycogen was enhanced by insulin but decreased by H2O2. Given that triose phosphate isomerase is generally assumed to fully equilibrate carbon tracers in the triose pool, the marked 13C asymmetry in glycogen can only be attributed to conversion of [U-13C3]glycerol to [U-13C3]dihydroxyacetone phosphate and [U-13C3]glyceraldehyde 3-phosphate followed by rearrangements in the nonoxidative branch of the pentose phosphate pathway involving transaldolase that places this 13C-enriched 3-carbon unit only in the bottom half of hexose phosphate molecules contributing to glycogen.  相似文献   

19.
The ruminal bacterium Synergistes jonesii strain 78-1, which is able to degrade the pyridinediol toxin in the plant Leucaena leucephala, was studied for its ability to utilise amino acids. The organism used arginine, histidine and glycine from a complex mixture of amino acids, and both arginine and histidine supported growth in a semi-defined medium. The products of (U-14C)-arginine metabolism were CO2 acetate, butyrate, citrulline and ornithine. The labelling pattern of end products from (U-14C)-histidine metabolism differed in that carbon also flowed into formate and propionate. Arginine was catabolised by the arginine deiminase pathway which was characterised by the presence of arginine deiminase, ornithine transcarbamylase and carbamate kinase. This is the first report of a rumen bacterium that uses arginine and histidine as major energy yielding substrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号