首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through a right thoracotomy in seven sheep we chronically implanted sonomicrometry crystals and electromyographic electrodes in the costal and crural diaphragmatic regions. Awake sheep were studied during recovery for 4-6 wk, both during quiet breathing (QB) and during CO2 rebreathing. Tidal volume, respiratory frequency, and esophageal and gastric pressures were studied before and after surgery. Normalized resting length (LFRC) was significantly decreased for the costal segment on postoperative day 1 compared with postoperative day 28. Fractional costal shortening both during QB and at 10% end-tidal CO2 (ETCO2) increased significantly from postoperative days 1 to 28, whereas crural shortening did not change during QB but progressively increased at 10% ETCO2. Maximal costal shortening during electrophrenic stimulation was constant at 40% LFRC during recovery, although maximal crural shortening increased from 23 to 32% LFRC. Minute ventilation, tidal volume, and transdiaphragmatic pressure at 10% ETCO2 increased progressively after thoracotomy until postoperative day 28. Our results suggest there is profound diaphragmatic inhibition after thoracotomy and crystal implantation in sheep that requires at least 3-4 wk for stable recovery.  相似文献   

2.
Because the first stage of expiration or "postinspiration" is an active neurorespiratory event, we expect some persistence of diaphragm electromyogram (EMG) after the cessation of inspiratory airflow, as postinspiratory inspiratory activity (PIIA). The costal and crural segments of the mammalian diaphragm have different mechanical and proprioceptive characteristics, so postinspiratory activity of these two portions may be different. In six canines, we implanted chronically EMG electrodes and sonomicrometer transducers and then sampled EMG activity and length of costal and crural diaphragm segments at 4 kHz, 10.2 days after implantation during wakeful, resting breathing. Costal and crural EMG were reviewed on-screen, and duration of PIIA was calculated for each breath. Crural PIIA was present in nearly every breath, with mean duration 16% of expiratory time, compared with costal PIIA with duration -2. 6% of expiratory time (P < 0.002). A linear regression model of crural centroid frequency vs. length, which was computed during the active shortening of inspiration, did not accurately predict crural EMG centroid frequency values at equivalent length during the controlled relaxation of postinspiration. This difference in activation of crural diaphragm in inspiration and postinspiration is consistent with a different pattern of motor unit recruitment during PIIA.  相似文献   

3.
In vivo length-force relationship of canine diaphragm   总被引:4,自引:0,他引:4  
Diaphragmatic length was measured by sonomicrometry and transdiaphragmatic pressure (Pdi) by conventional latex balloons in eight dogs anesthetized with pentobarbital sodium under passive conditions and during supramaximal phrenic stimulation. The passive length-pressure relationship indicates that the crural part of the diaphragm is more compliant than the costal part. With supramaximal stimulation the costal diaphragm showed a length-pressure relationship similar in shape to in vitro length-tension curves previously described for the canine diaphragm. The crural part has a smaller pressure-length slope than the costal part in the length range from 80% of optimum muscle length (Lo) to Lo. At supine functional residual capacity (FRC) the resting length (LFRC) of the costal and crural diaphragms are not at Lo. The costal part is distended to 105% of Lo, and crural is shortened to 92% of Lo. Tidal shortening will increase the force output of costal while decreasing that of the crural diaphragm. The major forces setting the passive supine LFRC are the abdominal weight (pressure) and the elastic recoil of the lungs. The equilibrium length (resting length of excised diaphragmatic strips) was 79 +/- 3.6% LFRC for the costal diaphragm and 87 +/- 3.9% LFRC for the crural diaphragm. Similar shortening was obtained in the upright position, indicating passive diaphragmatic stretch at supine LFRC.  相似文献   

4.
Respiratory muscle length was measured with sonomicrometry to determine the relation between inspiratory flow and velocity of shortening of the external intercostal and diaphragm. Electromyographic (EMG) activity and tidal shortening of the costal and crural segments of the diaphragm and of the external intercostal were recorded during hyperoxic CO2 rebreathing in 12 anesthetized dogs. We observed a linear increase of EMG activity and peak tidal shortening of costal and crural diaphragm with alveolar CO2 partial pressure. For the external intercostal, no consistent pattern was found either in EMG activity or in tidal shortening. Mean inspiratory flow was linearly related to mean velocity of shortening of costal and crural diaphragm, with no difference between the two segments. Considerable shortening occurred in costal and crural diaphragm during inspiratory efforts against occlusion. We conclude that the relation between mean inspiratory flow and mean velocity of shortening of costal and crural diaphragm is linear and can be altered by an inspiratory load. There does not appear to be a relationship between inspiratory flow and velocity of shortening of external intercostals.  相似文献   

5.
Changes in length of costal and crural segments of the canine diaphragm were measured by sonomicrometry within the first 100-300 ms of inspiration during CO2 rebreathing in anesthetized animals. Both segments showed small but significant decreases in end-expiratory length during progressive hypercapnia. Although both costal and crural segments showed electromyographic activity within the first 100 ms of inspiration, in early inspiration crural shortening predominated with minimal costal shortening. Neither segment contracted isometrically early in inspiration in the presence of airway occlusion. The amount of crural shortening during airway occlusion exceeded costal shortening; both segments showed increased shortening with prolonged occlusion and increasing CO2. Costal and crural shortening at 100 ms was not different for unoccluded and occluded states. These observations suggest that neural control patterns evoke discrete and unequal contributions from the diaphragmatic segments at the beginning of an inspiration; the crural segment may be predominately recruited in early inspiration. Despite traditional assumptions about occlusion pressure measurement (P0.1), diaphragm segments do not contract isometrically during early inspiratory effort against an occluded airway.  相似文献   

6.
We examined the relationship between changes in abdominal cross-sectional area, measured by respiratory inductive plethysmography, and changes in length in the costal and crural parts of the diaphragm, measured by sonomicrometry, in nine supine, anesthetized dogs. During passive inflation, both parts of the diaphragm shortened and abdominal cross-sectional area increased. During passive deflation, both parts of the diaphragm lengthened and abdominal cross-sectional area decreased. We subsequently used the relationship between costal and crural diaphragmatic length, respectively, and abdominal cross-sectional area during passive inflation-deflation to predict the length changes in the costal and crural diaphragm during quiet breathing before and after bilateral phrenicotomy. In the intact animal the inspiratory shortening in the crural diaphragm was almost invariably greater than predicted from the relationship during passive inflation. During inspiration after phrenicotomy the crural diaphragm invariably lengthened, whereas the costal diaphragm often shortened. In general there was a good correlation between the measured and predicted length change for the crural diaphragm (r = 0.72 before and 0.79 after phrenicotomy) and a poor one for the costal diaphragm (r = 0.05 before and 0.19 after phrenicotomy).  相似文献   

7.
In vivo length and shortening of canine diaphragm with body postural change   总被引:1,自引:0,他引:1  
Using sonomicrometry, we measured the in vivo tidal shortening and velocity of shortening of the costal and crural segments of the diaphragm in the anesthetized dog in the supine, upright, tailup, prone, and lateral decubitus postures. When compared with the supine position, end-expiratory diaphragmatic length varied by less than 11% in all postures, except the upright. During spontaneous breathing, the tidal shortening and the velocity of shortening of the crural segment exceeded that of the costal segment in all postures except the upright and was maximal for both segments in the prone posture. We noted the phasic integrated electromyogram to increase as the end-expiratory length of the diaphragm shortened below and to decrease as the diaphragm lengthened above its optimal length. This study shows that the costal and crural segments have a different quantitative behavior with body posture and both segments show a compensation in neural drive to changes in resting length.  相似文献   

8.
The use of sonomicrometry to study the mechanical properties of the diaphragm in vivo is presented. This method consists of the implantation of piezoelectric transducers between muscle fibers to measure the fibers' changes in length. Ultrasonic bursts are produced by one transducer upon electrical excitation and sensed by a second transducer placed 1-2 cm away. The time elapsed between the generation of the ultrasound burst and its detection is used to calculate the intertransducer distance. Excitation and sampling are done at 1.5 kHz and the output is a DC signal proportional to the length change between the transducers. Neither irreversible injury to the diaphragm nor regional differences within an anatomical part or segment were noted. Measurements were stable within the physiological range of temperature. We measured costal and crural length and velocity of contraction in anesthetized dogs during spontaneous breathing, occluded inspirations, passive lung inflation, and supramaximal phrenic nerve stimulation. We found that shortening during spontaneous breathing was 11 and 6% for crural and costal, respectively. The crural leads the costal in velocity of shortening. Supramaximal stimulation results in a velocity of shortening of 5 resting lengths X s-1. During an occluded inspiration crural shortens as much as in the nonoccluded breath, whereas costal shortens less. During passive lung inflation there is a nearly linear relationship between lung volume and diaphragm length; however, the relationships of chest wall dimensions with diaphragm length are nonlinear and cannot be described by any simple function. Some of the implications of these data on the present understanding of diaphragmatic mechanics are discussed.  相似文献   

9.
To follow regional deformation of the diaphragm in dogs, radiopaque markers were implanted under surgical anesthesia into different anatomic regions of the muscle in triangular arrays (approximately 1 cm to a side). After recovery from surgery, changes in area and shape of the triangles were followed with biplane cinefluorography during quiet breathing and during inspiratory efforts against an occluded airway (Mueller maneuvers). From changes in shape of the triangles during contraction, area changes were decomposed into a major direction and magnitude of shortening (Eg1) and a minor length change (Eg2) perpendicular to Eg1, both expressed as a fraction of initial length at end expiration. With the use of these techniques, systematic differences in regional area change were observed in different parts of the diaphragm during inspiratory efforts at different lung volumes. Regional area always decreased during contraction in the crural and midcostal zones of apposition to the rib cage. Area decreased less and often increased during inspiratory efforts in the costal dome near the central tendon and in the costal region near its rib cage insertion. Differences in regional area change were not due to differences in the Eg1 in different parts of the diaphragm but were a consequence of differences in widening of the muscle along Eg2 perpendicular to the direction of Eg1. As lung volume was passively increased above functional residual capacity, regional area decreased in all parts of the diaphragm except in the costal regions near rib cage insertion, where area increased.  相似文献   

10.
Sonomicrometry was used to measure end-expiratory length and tidal shortening of the costal and crural diaphragm in awake chronically instrumented dogs in the right lateral decubitus, standing, and sitting postures. End-expiratory length did not change significantly in standing but fell by 11.5% for the costal and by 14.4% for the crural segment in sitting, when compared with decubitus position. Tidal shortening of both segments did not change significantly in the three postures. From decubitus to sitting, diaphragmatic electromyogram (EMG) activity increased only in some dogs, not significantly for the group. The inspiratory swing of abdominal pressure was always positive in decubitus and negative in standing and sitting. In the latter two postures, abdominal pressure increased gradually during expiration and fell in inspiration, suggesting a phasic expiratory contraction of abdominal muscles. We conclude that diaphragmatic tidal shortening is maintained in the different postures assumed by the awake dog during resting breathing. It seems that the main compensatory mechanism for changes in diaphragmatic operational length is a phasic expiratory contraction of the abdominal muscles rather than an increase in diaphragmatic EMG activity.  相似文献   

11.
Previous studies have shown in awake dogs that activity in the crural diaphragm, but not in the costal diaphragm, usually persists after the end of inspiratory airflow. It has been suggested that this difference in postinspiratory activity results from greater muscle spindle content in the crural diaphragm. To evaluate the relationship between muscle spindles and postinspiratory activity, we have studied the pattern of activation of the parasternal and external intercostal muscles in the second to fourth interspaces in eight chronically implanted animals. Recordings were made on 2 or 3 successive days with the animals breathing quietly in the lateral decubitus position. The two muscles discharged in phase with inspiration, but parasternal intercostal activity usually terminated with the cessation of inspiratory flow, whereas external intercostal activity persisted for 24.7 +/- 12.3% of inspiratory time (P < 0.05). Forelimb elevation in six animals did not affect postinspiratory activity in the parasternal but prolonged postinspiratory activity in the external intercostal to 45.4 +/- 16.3% of inspiratory time (P < 0.05); in two animals, activity was still present at the onset of the next inspiratory burst. These observations support the concept that muscle spindles are an important determinant of postinspiratory activity. The absence of such activity in the parasternal intercostals and costal diaphragm also suggests that the mechanical impact of postinspiratory activity on the respiratory system is smaller than conventionally thought.  相似文献   

12.
Active and passive shortening of muscle bundles in the canine diaphragm were measured with the objective of testing a consequence of the minimal-work hypothesis: namely, that the ratio of active to passive shortening is the same for all active muscles. Lengths of six muscle bundles in the costal diaphragm and two muscle bundles in the crural diaphragm of each of four bred-for-research beagle dogs were measured by the radiopaque marker technique during the following maneuvers: a passive deflation maneuver from total lung capacity to functional residual capacity, quiet breathing, and forceful inspiratory efforts against an occluded airway at different lung volumes. Shortening per liter increase in lung volume was, on average, 70% greater during quiet breathing than during passive inflation in the prone posture and 40% greater in the supine posture. For the prone posture, the ratio of active to passive shortening was larger in the ventral and midcostal diaphragm than at the dorsal end of the costal diaphragm. For both postures, active shortening during quiet breathing was poorly correlated with passive shortening. However, shortening during forceful inspiratory efforts was highly correlated with passive shortening. The average ratios of active to passive shortening were 1.23 +/- 0.02 and 1.32 +/- 0.03 for the prone and supine postures, respectively. These data, taken together with the data reported in the companion paper (T. A. Wilson, M. Angelillo, A. Legrand, and A. De Troyer, J. Appl. Physiol. 87: 554-560, 1999), support the hypothesis that, during forceful inspiratory efforts, the inspiratory muscles drive the chest wall along the minimal-work trajectory.  相似文献   

13.
Esophageal distension causes simultaneous relaxation of the lower esophageal sphincter (LES) and crural diaphragm. The mechanism of crural diaphragm relaxation during esophageal distension is not well understood. We studied the motion of crural and costal diaphragm along with the motion of the distal esophagus during esophageal distension-induced relaxation of the LES and crural diaphragm. Wire electrodes were surgically implanted into the crural and costal diaphragm in five cats. In two additional cats, radiopaque markers were also sutured into the outer wall of the distal esophagus to monitor esophageal shortening. Under light anesthesia, animals were placed on an X-ray fluoroscope to monitor the motion of the diaphragm and the distal esophagus by tracking the radiopaque markers. Crural and costal diaphragm electromyograms (EMGs) were recorded along with the esophageal, LES, and gastric pressures. A 2-cm balloon placed 5 cm above the LES was used for esophageal distension. Effects of baclofen, a GABA(B) agonist, were also studied. Esophageal distension induced LES relaxation and selective inhibition of the crural diaphragm EMG. The crural diaphragm moved in a craniocaudal direction with expiration and inspiration, respectively. Esophageal distension-induced inhibition of the crural EMG was associated with sustained cranial motion of the crural diaphragm and esophagus. Baclofen blocked distension-induced LES relaxation and crural diaphragm EMG inhibition along with the cranial motion of the crural diaphragm and the distal esophagus. There is a close temporal correlation between esophageal distension-mediated LES relaxation and crural diaphragm inhibition with the sustained cranial motion of the crural diaphragm. Stretch caused by the longitudinal muscle contraction of the esophagus during distension of the esophagus may be important in causing LES relaxation and crural diaphragm inhibition.  相似文献   

14.
Functional characteristics of canine costal and crural diaphragm   总被引:1,自引:0,他引:1  
We estimated the in situ force-generating capacity of the costal and crural portions of the canine diaphragm by relating in vitro contractile properties and diaphragmatic dimensions to in situ lengths. Piezoelectric crystals were implanted on right costal and left crural diaphragms of anesthetized dogs, via midline laparatomy. With the abdomen reclosed, diaphragm lengths were recorded at five lung volumes. Contractile properties of excised muscle bundles were then measured. In vitro force-frequency and length-tension characteristics of the costal and crural diaphragms were virtually identical; their optimal force values were 2.15 and 2.22 kg/cm2, respectively. In situ, at residual volume, functional residual capacity (FRC), and total lung capacity the costal diaphragm lay at 102, 95, and 60% of optimal length (Lo), whereas the crural diaphragm lay at 88, 84, and 66% of Lo. Muscle cross-sectional area was 40% greater in costal than in crural diaphragms. Considering in situ lengths, cross-sectional areas, and in vitro length-tension characteristics at FRC, the costal diaphragm could exert 60% more force than the crural diaphragm.  相似文献   

15.
Regional distribution of blood flow within the diaphragm   总被引:2,自引:0,他引:2  
We investigated the regional distribution of blood flow (Q) within the costal and crural portions of the diaphragm in a total of eight anesthetized supine mongrel dogs. Q was measured with 15-microns microspheres, radiolabeled with three different isotopes, injected into the left ventricle during spontaneous breathing (SB), inspiratory resistive loading (IR), and mechanical ventilation after paralysis (P). At necropsy, the costal and crural portions of each hemidiaphragm were arbitrarily subdivided along a sagittal plane into five to seven and three sections, respectively. During P, there was a dorsoventral Q gradient within the costal part of the diaphragm. During SB there was a fourfold increase in the gradient of Q. Furthermore, during IR, in which mouth pressures of -16 +/- 4 cmH2O were generated, there was a further increase in the gradient of Q. During both SB and IR, Q to the most ventral portion of the costal diaphragm was 26 +/- 6% less than the peak value. In two dogs, studied prone and supine, there was no difference in the Q gradients between the two postures. Over the dorsal 80% of the costal diaphragm there was also a dorsoventral gradient of muscle thickness, such that the most dorsal part was 54 +/- 2% (n = 5) that of the ventral portion. In contrast, there was no consistent gradient of Q or muscle thickness within the crural diaphragm. Our results demonstrate a topographical gravity-independent distribution of Q in the costal, but not the crural, diaphragm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We studied chest wall mechanics at functional residual capacity (FRC) and near total lung capacity (TLC) in 14 supine anesthetized and vagotomized dogs. During breathing near TLC compared with FRC, tidal volume decreased (674 +/- 542 vs. 68 +/- 83 ml; P less than 0.025). Both inspiratory changes in gastric pressure (4.5 +/- 2.5 vs. -0.2 +/- 2.0 cmH2O; P less than 0.005) and changes in abdominal cross-sectional area (25 +/- 17 vs. -1.0 +/- 4.2%; P less than 0.001) markedly decreased; they were both often negative during inspiration near TLC. Parasternal intercostal shortening decreased (-3.0 +/- 3.7 vs. -2.0 +/- 2.7%), whereas diaphragmatic shortening decreased slightly more in both costal and crural parts (costal -8.4 +/- 2.9 vs. -4.3 +/- 4.1%, crural -22.8 +/- 13.2 vs. -10.0 +/- 7.5%; P less than 0.05). As a result, the ratio of parasternal to diaphragm shortening increased near TLC (0.176 +/- 0.135 vs. 0.396 +/- 0.340; P less than 0.05). Electromyographic (EMG) activity in the parasternals slightly decreased near TLC, whereas the EMG activity in the costal and crural parts of the diaphragm slightly increased. We conclude that 1) the mechanical outcome of diaphragmatic contraction near TLC is markedly reduced, and 2) the mechanical outcome of parasternal intercostal contraction near TLC is clearly less affected.  相似文献   

17.
We measured the contribution of aortic, internal mammary, and intercostal arteries to the blood flow to the costal and crural segments of the diaphragm and other respiratory muscles in seven dogs breathing against a fixed inspiratory elastic load. We used radiolabeled microspheres to measure the blood flow with control circulation, occlusion of the aorta distal to the left subclavian artery, combined occlusion of the aorta and both internal mammary arteries, and occlusion of internal mammary arteries alone. With occlusion of the aorta distal to the left subclavian artery, blood flow to the crural diaphragm decreased from 40.3 to 23.5 ml . min-1 X 100 g-1, whereas costal flow did not change significantly (from 41.7 to 38.1 ml . min-1 . 100 g-1). Blood flows to the sternomastoid and scalene muscles (above the occlusion) increased by 200 and 340%, respectively, whereas flows to the other respiratory muscles did not change significantly. Blood flows to organs above the occlusion either remained unchanged or increased, whereas flows to those below the occlusion all decreased. When the internal mammary artery was also occluded, flows to the crural segment decreased further to 12.1 and costal flow decreased to 20.4 ml X min-1 X 100 g-1. Internal mammary arterial occlusion alone in two dogs had no effect on diaphragmatic flow. In conclusion, intercostal collateral vessels are capable of supplying a significant proportion of blood flow to both segments of the diaphragm but the costal segment is better served than the crural segment.  相似文献   

18.
We investigated the effects of PGF2 alpha on the breathing patterns and electric activity of costal and crural parts of the diaphragm in 9 anesthetized newborn pigs. The change in diaphragmatic tension was evaluated as the change in transdiaphragmatic pressure. Because PGF2 alpha induces bronchoconstriction and an increase in respiratory resistances, the changes induced by prostaglandin were evaluated as differences between bronchoconstriction after PGF2 alpha and resistive load obtained by applying gradual occlusion to the inspiratory line of the breathing circuit. Our results show that PGF2 alpha decreased respiratory frequency with lengthening of expiratory time, while the resistive load increased both respiratory phases. The changes in breathing pattern were associated with different electrical activities of the diaphragm. While resistive load did not significantly change the EMG power spectrum, PGF2 alpha recruited new motor units. Furthermore, resistive load induced synchronization of the inspiratory time discharge of the costal and crural parts of the diaphragm, while after PGF2 alpha infusion there was an early inspiratory discharge of the crural part.  相似文献   

19.
We investigated the relationship between the volumes displaced by the diaphragm and the abdominal wall during spontaneous breathing in supine anesthetized dogs. Diaphragmatic volume displacement (Vdi) was calculated from measurements taken from anteroposterior fluoroscopic images employing a previously described geometric model. The volume displacement of the abdominal wall (Vabd) was measured with a calibrated Respitrace. Shortening of single diaphragm muscle bundles in costal and crural regions was measured as the distance between radiopaque beads sutured to the peritoneal surface of the muscle. We found that Vdi always exceeded Vabd, but Vabd/Vdi was larger in animals in which the abdominal wall was more compliant. In this preparation, Vdi is better correlated with costal than with crural shortening. Vabd did not correlate with either costal or crural shortening. We infer that the difference between Vdi and Vabd reflects the volume displacement of the lower rib cage caused by diaphragm contraction. This volume difference was tightly correlated with costal shortening. We conclude from these data that coupling between Vdi and Vabd is influenced by the relative compliances of the chest wall and abdomen. Shortening of regions of the diaphragm may have variable relationships to the measured volume displacement, but costal shortening is intimately related to expansion of the lower rib cage.  相似文献   

20.
The effects of the distension of the lower oesophageal sphincter were studied on the inspiratory activity of 96 medullary neurons located either in the dorsal or in the ventral respiratory groups and on the inspiratory activity of the costal and crural parts of the diaphragm in barbiturate anaesthetized cat. Inhibition of the inspiratory activity of the crural part of the diaphragm during oesophageal distension was never associated with significant changes of the medullary inspiratory neuron discharge. These results suggest that the observed crural inhibition is due to reflex loop that does not include the inspiratory neurons belonging to the dorsal and the ventral respiratory groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号