首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Social isolation of rats for 30 days immediately after weaning results in marked decreases in the cerebrocortical and plasma concentrations of pregnenolone, progesterone, 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG), and 3alpha,5alpha-tetrahydrodeoxycorticosterone (3alpha,5alpha-TH DOC), as well as a moderate increase in the plasma concentration of corticosterone. This mildly stressful condition has now been shown to increase the sensitivity of rats to the effect of acute ethanol administration on the cerebrocortical and plasma concentrations of neuroactive steroids. The percentage increases in the brain and plasma concentrations of pregnenolone, progesterone, 3alpha,5alpha-TH PROG, and 3alpha,5alpha-TH DOC, apparent 20 min after a single intraperitoneal injection of ethanol (1 g/kg), were thus markedly greater in isolated rats than in group-housed animals. A subcutaneous injection of isoniazid (300 mg/kg) also induced greater percentage increases in the concentrations of these steroids in isolated rats than in group-housed animals. These results suggest that mild chronic stress, such as that induced by social isolation, enhances the steroidogenic effect of ethanol, a drug abused by humans under stress or affected by neuropsychiatric disorders. Social isolation also induced hyper-responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis, as was apparent after reduction of GABA-mediated inhibitory tone by isoniazid administration.  相似文献   

2.
The role of neuroactive steroids and GABA(A) receptors in the generation of spontaneous spike-and-wave discharges (SWDs) was investigated in the WAG/Rij rat model of absence epilepsy. The plasma, cerebrocortical, and thalamic concentrations of the progesterone metabolite 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG) were increased in the WAG/Rij rat at 2 months of age compared with those in control (Wistar) rats. In contrast, the brain and peripheral levels of 3alpha,5alpha-tetrahydrodeoxycorticosterone (3alpha,5alpha-TH DOC) did not differ between the two rat strains at this age. At 6 months of age, when absence epilepsy worsens in WAG/Rij rats, the plasma concentration of 3alpha,5alpha-TH PROG remained high whereas that of 3alpha,5alpha-TH DOC had increased, the cerebrocortical levels of both 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC had increased, and the thalamic concentrations of these metabolites had decreased. At 6 months of age the expression of the alpha(4) and delta subunits of the GABA(A) receptor in relay nuclei was increased. Finally, chronic stress induced by social isolation elicited a reduction in the amount of 3alpha,5alpha-TH PROG in the thalamus of 2-month-old WAG/Rij rats that was associated with a reduction in the number and overall duration of SWDs at 6 months of age. Absence epilepsy in the WAG/Rij rat is thus associated with changes in the abundance of neuroactive steroids and in the expression of specific GABA(A) receptor subunits in the thalamus, a brain area key to the pathophysiology of this condition.  相似文献   

3.
Previously we have demonstrated that social isolation of rats reduces both the cerebrocortical and plasma concentrations of 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG), and potentiates the positive effects of acute ethanol administration on the concentrations of this neurosteroid. We now show that the ethanol-induced increase in 3alpha,5alpha-TH PROG is more pronounced in the brain than in the plasma of isolated rats. The ability of ethanol to inhibit isoniazid-induced convulsions is greater in isolated rats than in group-housed animals and this effect is prevented by treatment with finasteride. Social isolation modified the effects of ethanol on the amounts of steroidogenic regulatory protein mRNA and protein in the brain. Moreover, ethanol increased the amplitude of GABA(A) receptor-mediated miniature inhibitory postsynaptic currents recorded from CA1 pyramidal neurones with greater potency in hippocampal slices prepared from socially isolated rats than in those from group-housed rats, an effect inhibited by finasteride. The amounts of the alpha(4) and delta subunits of the GABA(A) receptor in the hippocampus were increased in isolated rats as were GABA(A) receptor-mediated tonic inhibitory currents in granule cells of the dentate gyrus. These results suggest that social isolation results in changes in GABA(A) receptor expression in the brain, and in an enhancement of the stimulatory effect of ethanol on brain steroidogenesis, GABA(A) receptor function and associated behaviour.  相似文献   

4.
The effects of social isolation on behavior, neuroactive steroid concentrations, and GABA(A) receptor function were investigated in rats. Animals isolated for 30 days immediately after weaning exhibited an anxiety-like behavioral profile in the elevated plus-maze and Vogel conflict tests. This behavior was associated with marked decreases in the cerebrocortical, hippocampal, and plasma concentrations of pregnenolone, progesterone, allopregnanolone, and allotetrahydrodeoxycorticosterone compared with those apparent for group-housed rats; in contrast, the plasma concentration of corticosterone was increased in the isolated animals. Acute footshock stress induced greater percentage increases in the cortical concentrations of neuroactive steroids in isolated rats than in group-housed rats. Social isolation also reduced brain GABA(A) receptor function, as evaluated by measuring both GABA-evoked Cl(-) currents in XENOPUS: oocytes expressing the rat receptors and tert-[(35)S]butylbicyclophosphorothionate ([(35)S]TBPS) binding to rat brain membranes. Whereas the amplitude of GABA-induced Cl(-) currents did not differ significantly between group-housed and isolated animals, the potentiation of these currents by diazepam was reduced at cortical or hippocampal GABA(A) receptors from isolated rats compared with that apparent at receptors from group-housed animals. Moreover, the inhibitory effect of ethyl-beta-carboline-3-carboxylate, a negative allosteric modulator of GABA(A) receptors, on these currents was greater at cortical GABA(A) receptors from socially isolated animals than at those from group-housed rats. Finally, social isolation increased the extent of [(35)S]TBPS binding to both cortical and hippocampal membranes. The results further suggest a psychological role for neurosteroids and GABA(A) receptors in the modulation of emotional behavior and mood.  相似文献   

5.
Social isolation in male rats at weaning results in reduced basal levels of the neuroactive steroid 3α,5α‐tetrahydroprogesterone (3α,5α‐TH PROG) in the brain and plasma as well as increased anxiety‐like behavior. We now show that socially isolated female rats also manifest a reduced basal cerebrocortical concentration of 3α,5α‐TH PROG as well as an anxiety‐like profile in the elevated plus‐maze and Vogel conflict tests compared with group‐housed controls. In contrast, despite the fact that they were raised under normal conditions, adult male offspring of male and female rats subjected to social isolation before mating exhibited an increased basal cerebrocortical level of 3α,5α‐TH PROG but no difference in emotional reactivity compared with the offspring of group‐housed parents. These animals also showed an increased basal activity of the hypothalamic‐pituitary‐adrenal axis as well as reduced abundance of corticotropin‐releasing factor in the hypothalamus and of corticotropin‐releasing factor receptor type 1 in the pituitary. Moreover, negative feedback regulation of hypothalamic‐pituitary‐adrenal axis activity by glucocorticoid was enhanced in association with up‐regulation of glucocorticoid receptor expression in the hippocampus. There was also attenuation of corticosterone release induced by foot‐shock stress in the offspring of socially isolated parents. The increase in the brain concentration of 3α,5α‐TH PROG induced by acute stress was also blunted in these animals. Our results thus show that a stressful experience before mating can influence neuroendocrine signaling in the next generation.  相似文献   

6.
The nervous system is a target for physiological and protective effects of neuroactive steroids. Consequently, the assessment of their levels in nervous structures under physiological and pathological conditions is a top priority. To this aim, identification and quantification of pregnenolone (PREG), progesterone (PROG), dihydroprogesterone (DHP), tetrahydroprogesterone (THP), testosterone (T), dihydrotestosterone (DHT), 5alpha-androstan-3alpha, 17beta-diol (3alpha-diol), 17alpha- and 17beta-estradiol (17alpha-E and 17beta-E) by liquid chromatography and tandem mass spectrometry (LC-MS/MS) has been set up. After validation, this method was applied to determine the levels of neuroactive steroids in central (i.e., cerebral cortex, cerebellum and spinal cord) and peripheral (i.e., brachial nerve) nervous system of control and diabetic rats. In controls only the brachial nerve had detectable levels of all these neuroactive steroids. In contrast, 17alpha-E in cerebellum, 17alpha-E, 17beta-E, DHP and THP in cerebral cortex, and 17alpha-E, 17beta-E and DHP in spinal cord were under the detection limit. Diabetes, induced by injection with streptozotocin, strongly affected the levels of some neuroactive steroids. In particular, the levels of PREG, PROG and T in cerebellum, of PROG, T and 3alpha-diol in cerebral cortex, of PROG, DHT and 3alpha-diol in spinal cord and of PREG, DHP, THP, T, DHT and 3alpha-diol in brachial nerve were significantly decreased. In conclusion, the data here reported demonstrate that the LC-MS/MS method allows the assessment of neuroactive steroids in the nervous system with high sensitivity and specificity and that diabetes strongly affects their levels, providing a further basis for new therapeutic tools based on neuroactive steroids aimed at counteracting diabetic neuropathy.  相似文献   

7.
Noise is an environmental physical agent, which is regarded as a stressful stimulus: impairment and modifications in biological functions are reported, after loud noise exposure, at several levels in human and animal organs and apparatuses, as well as in the endocrine, cardiovascular and nervous system. In the present study equilibrium binding parameters of peripheral benzodiazepine receptors (PBRs) labelled by the specific radioligand [3H]PK 11195, were evaluated in cardiac tissue of rats submitted to 6 or 12 h noise exposure and of rats treated "in vivo" with PBR ligands such as PK 11195, Ro54864, diazepam and then noise-exposed. Results revealed a statistically significant decrease in the maximum number of binding sites (Bmax) of [3H]PK 11195 in atrial membranes of 6 or 12 h noise exposed rats, compared with sham-exposed animals, without any change in the dissociation constant (Kd). The "in vivo" PBR ligand pre-treatment counteracted the noise-induced modifications of PBR density. As PBRs are mainly located on mitochondria we also investigated whether noise exposure can affect the [3H]PK 11195 binding parameters in isolated cardiac mitochondrial fractions. Results indicated a significant Bmax value decrease in right atrial mitochondrial fractions of rats 6 or 12 h noise-exposed. Furthermore, as PBR has been suggested to be a supramolecular complex that might coincide with the not-yet-established structure of the mitochondrial permeability transition (MPT)-pore, the status of the MPT-pore in isolated heart mitochondria was investigated in noise- and sham-exposed rats. The loss of absorbance associated with the calcium-induced MPT-pore opening was greater in mitochondria isolated from hearts of 6 h noise- than those of sham-exposed rats. In conclusion, these findings represent a further instance for PBR density decrease in response to a stressful stimulus, like noise; in addition they revealed that "in vivo" administration of PBR ligands significantly prevents this decrease. Finally, our data also suggest the involvement of MPT in the response of an organism to noise stress.  相似文献   

8.
The effect of endogenous 3α‐hydroxy‐5α‐pregnan‐20‐one (3α,5α‐TH PROG) on the modulation of mesocortical dopamine extracellular concentration by ethanol was investigated by microdialysis in rats. Intraperitoneal injection of progesterone (5 mg/kg, once a day for 5 days) increased the cortical content of 3α,5α‐TH PROG and potentiated the biphasic effect of acute intraperitoneal administration of ethanol on dopamine content. A dose of ethanol (0.25 g/kg) that was ineffective in naïve rats induced a 55% increase in dopamine extracellular concentration in rats pretreated with progesterone. This increase was similar to that induced by a higher dose (0.5 g/kg) of ethanol in naïve rats. Administration of ethanol at 0.5 g/kg to progesterone‐pretreated rats inhibited dopamine content by an extent similar to that observed with an even higher dose (1 g/kg) in naïve rats. The administration of the 5α‐reductase inhibitor finasteride (25 mg/kg, subcutaneous), together with progesterone, prevented the effects of the latter, both on the cortical concentration of 3α,5α‐TH PROG and on the modulation by ethanol of dopamine content. These data suggest that 3α,5α‐TH PROG contributes to the action of ethanol on the mesocortical dopaminergic system. They also suggest that physiological fluctuations in the brain concentrations of neuroactive steroids associated with the oestrous cycle, menopause, pregnancy and stress may alter the response of mesocortical dopaminergic neurons to ethanol.  相似文献   

9.
Neurosteroids: behavioral aspects and physiological implications]   总被引:7,自引:0,他引:7  
The term "neurosteroids" applies to those steroids that are both formed in the nervous system from sterol precursors, and accumulate in the nervous system, at least in part, independently of peripheral steroidogenic glands secretion. Neurosteroids that are active on the central nervous system include, mainly, pregnenolone (PREG), dehydroepiandrosterone (DHEA) and their sulfate esters (PREG-S and DHEA-S), as well as the reduced metabolite of progesterone, 3 alpha,5 alpha-TH PROG also called allopregnanolone. These neuroactive neurosteroids alter neuronal excitability by modulating the activity of several neurotransmitter receptors and thus can influence behavior. PREG-S decreases the sleeping time in rats anesthetized with a barbiturate, which is consistent with its antagonist action on the GABAA receptor (GABAA-R). Allopregnanolone is anxiolytic in rats tested in a conflict paradigm, through an interaction at a site specific for the benzodiazepine (BZ) receptor inverse agonist RO15-4513 and/or at the picrotoxinin site on GABAA-R. The contribution of the amygdala, a key region involved in the control of anxiety, is also demonstrated for the anxiolytic action of allopregnanolone. An anti-agressive effect of DHEA can be observed in castrated male mice who become agressive in the presence of lactating females. This inhibition of agressiveness by DHEA is associated to a selective decrease in the brain of PREG-S, which may, in turn, trigger an increase of endogenous GABAergic tone. Finally, cognitive performances of aged rats tested in the Morris water maze and the Y-maze can be correlated with individual concentrations of PREG-S in the hippocampus, i.e. poor performance in both tasks with low levels of PREG-S. Remarkably, the memory deficits are significantly improved, albeit transiently, by an intra-hippocampal injection of PREG-S in impaired aged rats. Promnesiant PREG-S may then reinforce some neurotransmitter systems that can decline with age. This brief review provides evidence of the pharmacology and physiological correlates of neurosteroids involved in behavioral phenomena. However, neurobiological mechanisms of behavioral effects of neurosteroids await further investigation.  相似文献   

10.
Dong E  Matsumoto K  Watanabe H 《Life sciences》1999,65(15):1561-1568
Our previous studies have shown that central-type benzodiazepine (BZD) receptors (CBR) and neurosteroids capable of modulating GABA(A) receptor function are involved in the decrease of pentobarbital (PB)-induced sleep caused by social isolation stress in mice. In this study, to further clarify the mechanism underlying this decrease, we investigated the possible involvement of peripheral-type BZD receptors (PBR) which play an important role in neurosteroidogenesis in PB sleep in socially isolated mice. Socially isolated mice showed significantly shorter duration of PB-induced sleep than group-housed animals. When injected intracerebroventricularly (i.c.v.), FGIN-1-27 (FGIN, 25-100 nmol), a selective PBR agonist, and PK11195 (PK, 14-28 nmol), a PBR antagonist, and pregnenolone (PREG, 15-30 nmol), a neurosteroid precursor, dose-dependently normalized the PB sleep in isolated mice without having an effect on the group-housed animals. In contrast, pregnenolone sulfate (PS, 24 nmol), an endogenous neurosteroidal negative allosteric modulator of the GABA(A) receptor, reduced PB sleep in group-housed but not isolated mice. PS, at the same dose, significantly attenuated the effects of FGIN (100 nmol), PK (28 nmol) and PREG (30 nmol) in isolated mice, while FGIN (100 nmol), PK (28 nmol) and pregnenolone (30 nmol) significantly blocked the effect of PS (24 nmol) in group-housed mice. These results suggest that the PBR-mediated decrease in the genesis of neurosteroid(s) possessing a GABA(A) receptor agonistic profile is also partly involved in the down regulation of the GABA(A) receptor following long-term social isolation and contributes to the decrease of PB-induced sleep in isolation stressed mice.  相似文献   

11.
Previous studies have shown that GABAergic neuroactive steroids increase Y1 receptor (Y1R) gene expression in the amygdala of Y 1 R / LacZ transgenic mice, harbouring the murine Y1R gene promoter linked to a LacZ reporter gene. As ethanol is known to increase GABAergic neuroactive steroids, we investigated the relationship between fluctuations in the brain content of neuroactive steroids induced by chronic voluntary ethanol consumption or ethanol discontinuation and both the level of neuropeptide Y (NPY) immunoreactivity and Y1R gene expression in the amygdala of Y 1 R / LacZ transgenic mice. Ethanol discontinuation (48 h) after voluntary consumption of consecutive solutions of 3%, 6%, 10% and 20% (v/v) ethanol over 4 weeks produced an anxiety-like behaviour as measured by elevated plus maze. Voluntary ethanol intake increased the cerebrocortical concentration of the progesterone metabolite 3α-hydroxy-5α-pregnan-20-one (3α,5α-TH PROG) that returned to control level 48 h after discontinuation of ethanol intake. Ethanol discontinuation significantly decreased NPY immunoreactivity and concomitantly increased Y 1 R / LacZ transgene expression in the amygdala, whereas chronic ethanol intake failed to affect these parameters. The 5α-reductase inhibitor finasteride prevented both the increase in the cerebrocortical concentration of 3α,5α-TH PROG apparent after 4 weeks of ethanol intake and the changes in NPY immunoreactivity and transgene expression induced by ethanol discontinuation. Data suggest that 3α,5α-TH PROG plays an important role in the changes in NPY–Y1R signalling in the amygdala during ethanol discontinuation.  相似文献   

12.
Deficiency in the long-chain omega-3 fatty acid, docosahexaenoic acid (DHA) has been associated with increased corticotropin releasing hormone and may contribute to hypothalamic pituitary axis (HPA) hyperactivity. Elevated levels of the neuroactive steroids, allopregnanolone (3alpha,5alpha-THP) and 3alpha,5alpha-tetrahydrodeoxycorticosterone (THDOC) appear to counter-regulate HPA hyperactivity. Plasma essential fatty acids and neurosteroids were assessed among 18 male healthy controls and among 34 male psychiatric patients with DSM-III alcoholism, depression, or both. Among all subjects, lower plasma DHA was correlated with higher plasma THDOC (r = -0.3, P < 0.05) and dihydroprogesterone (DHP) (r = -0.52, P < 0.05). Among psychiatric patients lower DHA was correlated with higher DHP (r = -0.60, P < 0.01), and among healthy controls lower plasma DHA was correlated with higher THDOC (r = -0.83, P < 0.01) and higher isopregnanolone (3beta,5alpha-THP) (r = -0.55, P < 0.05). In this pilot observational study, lower long-chain omega-3 essential fatty acid status was associated with higher neuroactive steroid concentrations, possibly indicating increased feedback inhibition of the HPA axis.  相似文献   

13.
In vitro studies using isolated cells, mitochondria and submitochondrial fractions demonstrated that in steroid synthesizing cells, the peripheral-type benzodiazepine receptor (PBR) is an outer mitochondrial membrane protein, preferentially located in the outer/inner membrane contact sites, involved in the regulation of cholesterol transport from the outer to the inner mitochondrial membrane, the rate-determining step in steroid biosynthesis. Mitochondrial PBR ligand binding characteristics and topography are sensitive to hormone treatment suggesting a role of PBR in the regulation of hormone-mediated steroidogenesis. Targeted disruption of the PBR gene in Leydig cells in vitro resulted in the arrest of cholesterol transport into mitochondria and steroid formation; transfection of the mutant cells with a PBR cDNA rescued steroidogenesis demonstrating an obligatory role for PBR in cholesterol transport. Molecular modeling of PBR suggested that it might function as a channel for cholesterol. This hypothesis was tested in a bacterial system devoid of PBR and cholesterol. Cholesterol uptake and transport by these cells was induced upon PBR expression. Amino acid deletion followed by site-directed mutagenesis studies and expression of mutant PBRs demonstrated the presence in the cytoplasmic carboxy-terminus of the receptor of a cholesterol recognition/interaction amino acid consensus sequence. This amino acid sequence may help for recruiting the cholesterol coming from intracellular sites to the mitochondria.  相似文献   

14.
Pregnenolone (PREG), synthesized de novo in rodent brain, is the precursor of PREG sulfate (S) and progesterone (PROG). PROG is further converted to 5-pregnane 3, 20-dione (DH PROG) and to 3-hydroxy-5-pregnan-20-one (TH PROG). PROG, DH PROG and TH PROG have been measured in the brain of male and female rats. Neither PROG nor DH PROG disappeared from brain, contrary to plasma, after combined adrenalectomy (ADX) and gonadectomy (CX). Trilostane decreased PROG and increased PREG in the brain of CX + ADX rats and mice, in accordance with a precursor to product relationship. As previously described in CX male mice, the neurosteroid DHEA and its analog 3β-methyl-androst-5-en-17-one (CH3-DHEA) inhibited the aggressive behavior of female mice towards lactating female intruders. The decrease of biting attacks by DHEA was definitely more prominent in females neonatally imprinted with testosterone. The degree of inhibition of aggressive behavior was related to the decrease of PREG S concentrations in brain. The memory-enhancing effects of DHEA S and PREG S in male mice have been previously documented. Infusion of PREG S (12 fmol) into the nucleus basalis magnocellularis (NBM) of the rat after the acquisition trial enhanced memory performance in a two-trial recognition task (TTRT). Conversely, TH PROG (6 fmol), which potentiates GABAergic neurotransmission, disrupted performance when injected before the acquisition trial. Accordingly, we have found a positive correlation between the performances of 2-year-old rats in the TTRT and the concentrations of PREG S in the hippocampus, namely animals which performed best had the highest steroid levels.  相似文献   

15.
J J Jessop  K Gale  B M Bayer 《Life sciences》1988,43(14):1133-1140
The effects of isolation and water scheduling on mitogen induced lymphocyte proliferation were investigated. Isolated rats were animals which had been raised in group-housed conditions and then transferred to individual cages with ad lib access to water for a 1 or 2 week period. Water scheduled rats were maintained in group housing (5 rats per cage) with ad lib access to food but with access to water for a single 30 minute session each day. Responses of these groups were compared to those of animals which had been continuously group-housed with ad lib access to food and water. No differences in lymphocyte responses to phytohemagglutinin (PHA) were found 1 week after exposure to isolation. However, after 2 weeks, splenic and blood T lymphocytes from isolated animals demonstrated an increased proliferative response to suboptimum and maximum concentrations of PHA. Splenic B lymphocyte responses to lipopolysaccharide (LPS) from isolated animals were also increased by 2- to 3-fold compared to group-housed controls. Two weeks of exposure of animals to daily water scheduling similarly increased the splenic lymphocyte proliferation. This increased responsiveness to PHA was not accompanied by a significant change in the sensitivity of the lymphocytes to PHA, in the total number of white blood cells, or the proportion of splenic T or T helper lymphocytes. Our results show that the increase in lymphocyte proliferation is time-dependent, requires greater than 1 week of exposure to isolation and is due to factors other than changes in sensitivity to mitogen or T lymphocyte number.  相似文献   

16.
Neurosteroids and neuroactive drugs in mental disorders   总被引:3,自引:0,他引:3  
Pisu MG  Serra M 《Life sciences》2004,74(26):3181-3197
Clinical and preclinical studies have suggested that fluctuations in the peripheral and brain concentrations of progesterone and deoxycorticosterone and its metabolites 3alpha,5alpha-tetrahydroprogesterone and 3alpha,5alpha-tetrahydrodeoxycorticosterone, respectively, might play an important role in certain pathological conditions characterized by emotional or affective disturbances, including major depression, anxiety disorders, and schizophrenia. Moreover, it has been shown that administration of drugs having clinical relevance in the treatment of these pathologies influence the secretion of these steroids. It remains to be determined, however, whether such changes in the concentrations of neuroactive steroids are a cause of, a risk factor for, or a consequence of mental disorders. The observation that effective pharmacological treatment of some of these pathologies influences the concentrations of neuroactive steroids suggests that these endogenous compounds might themselves prove to be efficacious in the treatment of mental illness.  相似文献   

17.
The peripheral benzodiazepine receptor (PBR) is a mitochondrial protein involved in the formation of mitochondrial permeability transition (PT) pores which play a critical role during the early events of apoptosis. PBRs are located in many tissues and are strongly expressed in the superficial layers of human epidermis. PBRs play a protective role against free radical damage and PBR ligands modulate apoptosis. To investigate the role of PBR during the early events of ultraviolet (UV)-mediated apoptosis we compared the effects of UVB on PBR-transfected Jurkat cells and their wild type counterparts devoid of any PBR expression. Results indicate that early after UVB exposure (up to 4 h), PBR-transfected cells were more resistant to apoptosis and exhibited a delayed mitochondrial transmembrane potential drop, a diminished superoxide anions production, and a reduced caspase-3 activation. Taken together these findings suggest that PBR may regulate early death signals leading to UV induced apoptosis.  相似文献   

18.
Our laboratory has previously shown that the synthetic neuroactive steroid 3alpha-hydroxy-5beta-pregnan-20-one hemisuccinate (3alpha5betaHS) is a negative modulator of NMDA receptors in vitro. Similarly, 3alpha5betaHS exhibits rapid sedative, analgesic, anticonvulsive, and neuroprotective effects in vivo. Here we report a study designed to investigate whether a negatively charged neuroactive steroid, 3alpha5betaHS, modulates the action of NMDA receptors in vivo. Our results indicate that peripherally administered 3alpha5betaHS enters the CNS and inhibits NMDA-mediated motor activity and dopamine release in the rat striatum. The increase in motor activity induced by intrastriatal microinjection of NMDA was blocked by the systemic administration of 3alpha5betaHS and the NMDA-induced increase in extracellular dopamine in the striatum was also attenuated by both systemically administered and intrastriatally administered (by in vivo microdialysis) 3alpha5betaHS. These data indicate that 3alpha5betaHS acts through striatal NMDA receptors in vivo. When taken together, these results suggest that neuroactive steroids may prove to be effective in the treatment of neurological and psychiatric disorders involving over-stimulation of NMDA receptors in the mesotelencephalic dopamine system.  相似文献   

19.
Metabolism of the neuroactive steroids pregnenolone (PREG), progesterone (PROG), dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulphate (DHEAS) was investigated in day-old chick brain following direct injection of the 3H-labelled compounds into the intermediate medial mesopallium and sampling at times known to be crucial for memory formation in this brain region. 3H-label from these steroids was cleared rapidly from the brain, decreasing to barely detectable levels within 5 h. Following extraction and fractionation, the 3H-labelled brain steroids were identified by TLC, coupled with acetylation and/or separation in different solvent systems. PREG and PROG were converted within 10 min mostly to 20β-dihydropregnenolone (20β-DHPREG) and 5β-dihydroprogesterone, respectively. There was no detectable metabolism of DHEA. Label from DHEAS persisted for longer (half-time 18.9 min) than the free steroid but with no detectable metabolism other than a small amount (4%) of desulphation to DHEA. Further investigation of chick brain steroid metabolism by incubation of subcellular fractions (1–3 h, 37°C) with PREG, PROG or DHEA plus NADPH led to the formation of the following compounds: 20β-DHPREG from PREG (particularly in cytosol); 5β-dihydroprogesterone and 3α,5β-tetrahydroprogesterone from PROG and no detectable metabolism of DHEA. Following incubation of the same brain fractions and labelled steroids with NAD+, there was no detectable metabolism of PREG or PROG but some conversion of DHEA to androstenedione, especially in the nuclear fraction. The results suggest direct actions of DHEA(S) on the early stages of memory formation in the chick and introduce the possibility that PREG may act indirectly via 20β-DHPREG.  相似文献   

20.
In the possum a marked sex difference has been found in the steroids in adrenal venous plasma. Four 5 beta-pregnane and four 5 alpha (beta) androstane derivatives together with ten 4-ene-3-keto steroids were isolated from the adrenal venous plasma of the female and definitively identified by gas chromatography-mass spectrometry. The major reduced steroids were: 5 beta-pregnane-3 alpha,17 alpha-diol-20-one and 5 beta-pregnane-3 alpha,17 alpha,20 alpha-triol, at concentrations of 52 +/- 12 micrograms/100 ml and 44 +/- 8 micrograms/100 ml mean +/- SEM respectively. The concentration of cortisol was 198 +/- 47 micrograms/100 ml. The concentration of the 2 reduced steroids in peripheral plasma were approx. 100 times less. In contrast the adrenal venous plasma of a male contained 14 steroids of which only three, found in trace amounts, were reduced. The results confirm previous in vitro observations that reduced steroids are produced by the adrenocortical special zone, which is only present in the female. The physiological significance of the presence of reduced steroids of adrenocortical origin in the circulation of the female possum is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号