首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Summary The Catecholaminergic innervation of neurons containing growth hormone-releasing factor (GRF) was examined by use of a method which combined either 5-hydroxydopamine (5-OHDA) uptake or autoradiography after intraventricular injection of 3H-noradrenaline with immunocytochemistry for GRF in the same tissue sections at the electron-microscopic level. In the ventrolateral part of the arcuate nucleus of the rat hypothalamus a large number of immunonegative axon terminals were found to make synaptic contact with GRF-like immunoreactive (GRF-LI) cell bodies and processes. 3H-noradrenaline autoradiography or 5-OHDA-labeling combined with GRF immunocytochemistry revealed that axon terminals labeled with 3H-noradrenaline or 5-OHDA make synaptic contact with the GRF-LI nerve cell bodies and processes. These findings indicate that catecholamine-containing neurons innervate GRF neurons to regulate GRF secretion via synapses in the rat arcuate nucleus.  相似文献   

2.
Summary The immunoreactive CRF-neurons of the rat hypothalamus have been examined immunohistochemically employing anti-rat CRF serum. These neurons are confined to the paraventricular nucleus, dorsomedial-lateral hypothalamic area, and suprachiasmatic nucleus, and are, respectively, also immunoreactive to anti-Met-enk, -alpha-MSH, and -VIP sera. Intraventricular administration of colchicine (50 g/5 l/rat) induces a dramatic enhancement of the immunostainability of the cell somata, and also accelerates the development of immunoreactivity of other stored peptides, especially in the paraventricular nucleus.The CRF-neurons respond to adrenalectomy by showing increased immunoreactivity and an increase in the number of cell bodies; in the dorsomedial-lateral area and suprachiasmatic nucleus, there is also an enhanced immunoreactivity for alpha-MSH and VIP, respectively. CRF-cells in the paraventricular nucleus become markedly hypertrophied, but do not show any enhanced immunoreactivity for Met-enk. Since the axons of the paraventricular neurons run to the median eminence, it is probable that they are involved with the endocrine control of hypophysial ACTH release. It is concluded that the CRF-containing neurons in rat hypothalamus consist of three types which are functionally and morphologically different.  相似文献   

3.
Summary The appearance and localization of LHRH were studied in the developing hypothalamus of perinatal rats using the unlabelled antibody method. By light microscopy, immunoreactive LHRH was first detected as brown dots on day 18.5 of gestation in the OVLT and on day 19.5 in the median eminence, respectively. When the median eminence was examined by the preembedding immunohistochemistry technique for electron microscopy, the occurrence of immunoreactive LHRH fibers could be demonstrated on day 18.5. These fibers were thin and very occasionally encountered near the surface of the lateral regions of the median eminence. The axoplasm contained a few immunopositive secretory granules and also extragranular immunoreactive products. With development, a gradual increase was noted both in number and size of nerve fibers with a concomitant accumulation of secretory granules within the axoplasm.A possible physiological significance of LHRH is discussed in relation to the onset of hypothalamo-hypophysial system in fetal life.  相似文献   

4.
Summary The location of the perikarya of LH-RH neurons in the rat hypothalamus and their pathways to the median eminence were studied by immunohistochemistry and radioimmunoassay after placing stereotaxic electrolytic lesions in several parts of the hypothalamus. The principal location of the cell somata was found to be in the ventral part of the medial preoptic area; their pathways were classified into a main baso-lateral pathway and an accessory descending pathway branching off from the former. The main pathway was found to cross in the vicinity of the corresponding neuronal perikarya. The central median eminence and the dorsal and ventral walls of the tubero-infundibular sulcus of the caudal part of the median eminence are innervated mainly by the baso-lateral pathway. On the other hand, the rostral and most caudal portions of the median eminence are innervated principally by the descending pathway and have a subsidiary dual innervation. The projection of LH-RH neurons to the OVLT is believed to originate from perikarya adjacent to this circumventricular organ.This work was supported in part by a grant (No. 248093, 321426) from the Ministry of Education, Science and Culture, Japan  相似文献   

5.
6.
Summary The rat hypothalamus was studied at the light microscopic level with the use of single and double immunocytochemical staining methods. It was shown that the rat supraoptic and paraventricular hypothalamic nuclei, and their accessory neurosecretory nuclei, do not contain magnocellular somatostatin neurons. The distribution of the hypothalamic parvocellular somatostatin cells is described. The parvocellular component of the rat hypothalamic paraventricular nucleus is, at least partly, composed of somatostatin cells: they form a fairly well circumscribed periventricular cell mass. The rat suprachiasmatic nuclei contain separate somatostatin neurons and vasopressin neurons. Scattered somatostatin cells are present in the entire arcuate nucleus. In addition to the periventricular somatostatin cells located in the preopticanterior hypothalamic area and in the arcuate nucleus, the rat hypothalamus also contains numerous scattered somatostatin cells located distant from the third ventricle.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

7.
Summary Melanin-concentrating hormone (MCH) is a neurosecretory peptide that induces melanin concentration within teleost melanophores. Here, we characterized MCH-like substance in the rat brain by both an in vitro fish-scale melanophore bioassay and a radioimmunoassay with a salmon MCH antiserum that is directed toward the carboxy-terminus and requires the cyclic configuration for recognition. Furthermore, subcellular localization of the MCH in the rat brain was examined by immunocytochemistry using electron microscopy. We confirmed that MCH-immunoreactivity and MCH-bioactivity were present together in the same effluent fractions of the rat hypothalamic extracts by reverse-phase high-performance liquid chromatography (HPLC). At electron microscopic level, MCH-immunoreactivity was located specifically in secretory granules in MCH-positive cell bodies confined to the hypothalamus with their neuronal processes projecting widely in the rat brain. Although full characterization of substance must await its isolation, our results strongly support the notion that rat MCH-like substance may be homologous but not identical to salmon MCH, and simultaneously may serve some neurotransmitter and/or neuromodulator role in the brain of the rat.  相似文献   

8.
Summary This paper deals with the ultrastructure of two types of intranuclear inclusions, microfilamentous spindle-shaped and crystalloid, present in paraventricular nucleus neurons of adult normal rats. These inclusions appear occasionally in some non-secretory neurons of the parvocellular system, but have never been seen in neurosecretory cells of the magnocellular system. The microfilamentous spindle-shaped inclusions show a close spatial relationship with the granulofibrillar body and interchromatin granules.The distribution and functional significance of such structures are discussed in the light of recent ultrastructural and biochemical studies on nuclear inclusions.  相似文献   

9.
Summary The development of immunoreactive (ir) somatostatin-containing nerve terminals in the rat median eminence (ME) has been examined electron-microscopically. Nerve fibers containing ir particles scattered throughout the axoplasm are first seen in the external layer of the ME on day 18.5 of gestation, and, on day 21.5 appear to terminate on the basement membrane of the perivascular space of the portal vessels. After birth, the fiber terminals contain several membrane-limited granules, which are labeled with ir PAP particles. Ultrathin, Epon-embedded sections of ME, treated by the protein A gold-labeling method for somatostatin, demonstrate positively labeled granules in the nerve fibers in the postnatal ME, but in the prenatal tissue, no specific gold-labeling is found. These findings show that, in the external layer of the ME, somatostatin storing occurs in the granules in the axonal terminals after birth.  相似文献   

10.
Summary The catecholaminergic innervation of thyrotropin-releasing hormone (TRH) neurons was examined by use of a combined method of 5-hydroxydopamine (5-OHDA) uptake or autoradiography after intraventricular injection of 3H-noradrenaline (3H-NA) and immunocytochemistry for TRH in the same tissue sections at the electron-microscopic level.TRH-like immunoreactive nerve cell bodies were distributed abundantly in the parvocellular part of the paraventricular nucleus (PVN), in the suprachiasmatic preoptic nucleus and in the dorsomedial nucleus of the rat hypothalamus. In the PVN, a large number of immunonegative axon terminals were found to make synaptic contact with TRH-like immunoreactive cell bodies and fibers. In the combined autoradiography or 5-OHDA labeling with immunocytochemistry, axon terminals labeled with 3H-NA or 5-OHDA were found to form synaptic contacts with the TRH immunoreactive nerve cell bodies and fibers. These findings suggest that catecholamine-containing neurons, probably noradrenergic, may innervate TRH neurons to regulate TRH secretion via synapses with other unknown neurons in the rat PVN.This study was supported by grants from the Ministry of Education, Science and Culture, Japan  相似文献   

11.
Summary Ontogenetic development of LHRH-containing neurons was studied by fluorescence and enzyme immunohistochemistry in rats. In in vitro studies, the tissues of the septal-chiasmatic and mediobasal hypothalamic areas of fetal rats on day 16.5 or 18.5 of gestation were trypsinized separately for dissociation of the neural cells, and cultured for several days. Immunopositive reaction against LHRH was first detected in nerve cells derived from both areas of the hypothalamus of the fetuses on days 16.5 and 18.5 of gestation, after 8 and 6 days culture, respectively. The cells were small, and seemed to be bipolar in morphology indicating an axon and arborized dendrites. Immunopositive material occurred in the cell soma as well as in the cellular processes. In in vivo studies, immunopositive material, possibly deposited in nerve fibers, appeared first in OVLT and simultaneously in the external layer of the median eminence of fetuses on day 20.5 of gestation. The immunoreactive fibers increased in number in both parts with development, especially after birth in the median eminence. No immunopositive material was detected within any neural cell bodies nor in the cytoplasm of any ependymal cells.This work was financed by the Ministry of Education, Japan. No. 257008. We would like to thank Dr. Katsuhiko Saito (Department of Surgery, Tokushima University) for his kind advice on the preparation of the antibody used for the immunofluorescence study.  相似文献   

12.
Summary Appearance of immunoreactive corticotropin-releasing factor (CRF)-containing neurons was studied in developing hypothalamus of the rat by use of antisera against rat- and ovine CRF. These neurons were first recognized in the lateral and paraventricular nuclei on days 15.5 and 16.5 of gestation, respectively, when antiserum against rat CRF was employed. Antiserum against ovine CRF revealed the cells two days later exclusively in the latter nucleus. In both nuclei, the neurons increased in number with development. The neurons in the paraventricular nucleus appeared to project their immunoreactive processes to the median eminence via the periventricular and lateral pathways. In the median eminence, the immunoreaction with antiserum to rat CRF was first recognized in its anterior portion in the form of dots on day 16.5 of gestation but as beaded fibers in the external layer on day 17.5; these structures increased in amount with development in rostro-caudal direction. Although antiserum to ovine CRF was less potent in immunostainability than antiserum to rat CRF, it also revealed the beaded fibers in the median eminence on day 17.5 of gestation. Since evidence is available that the paraventricular nucleus is involved in corticotropin release, it is concluded that, in rats, the hypothalamic regulatory mechanism controlling the release of corticotropin initially appears on days 16.5–17.5 of gestation.  相似文献   

13.
Summary The distribution of growth hormone-releasing factor (GRF)-like immunoreactivity in the human hypothalamus was studied by light-microscopic immunocytochemistry. With antibodies that we developed against synthetic human pancreatic GRF (hpGRF), we localized GRF immunoreactivity in neuronal cell bodies that were observed only in the infundibular (arcuate) nucleus. Immunostained nerve fibers were found in large numbers in the neurovascular zone of the median eminence, in the proximal portion of the pituitary stalk and in periventricular areas. These localizations are in agreement with those of studies recently performed in other species and strongly suggest that GRF can be released into the capillaries of the pituitary portal plexus to reach the anterior pituitary gland. The projections of GRF neurons in extra-infundibular regions suggest that GRF can also act as a neuromodulator or neurotransmitter in the hypothalamus.  相似文献   

14.
Localization of GRF-like immunoreactive neurons in the rat brain   总被引:2,自引:0,他引:2  
The localization of human GRF1-44-immunoreactive neurons was studied in the rat brain. A dense accumulation of GRF-containing fibers was noted in the external layer of the median eminence. Cell bodies were observed in colchicine-treated rats. The most intensely fluorescent cluster of cells was contained in the arcuate nucleus. Other cells were seen on the base of the hypothalamus, within the median forebrain bundle, dorsal and ventral aspects of the ventromedial nucleus, zona incerta and dorsal part of the dorsomedial nucleus. These cells may influence the pulsatile release of pituitary growth hormone.  相似文献   

15.
16.
Long-term (7 and 14 days) hypophysectomy resulted in a striking decrease in growth hormone releasing hormone-like immunoreactivity (GHRH-LI) in the median eminence (ME) of adult male rats, evaluated by both radioimmunoassay and immunohistochemistry. Treatment with human GH (125 μg/rat, twice daily IP for 14 days) prevented, though partially, depletion of GHRH-LI from the ME, as assessed by both methods. These results demonstrate that circulating GH levels regulate the function of GHRH-producing structures, via a feedback mechanism.  相似文献   

17.
Summary Immunoreactive luteinizing hormone-releasing hormone (LHRH)-like material has been demonstrated in the pineal gland of the adult rat. The objective of the present study was to examine the ontogenetic development of this LHRH-like substance in the rat pineal with the peroxidase-antiperoxidase (PAP) method of Sternberger. LHRH-like immunoreactive material was not observed in pineal glands of newborn rats. The amount of material increased progressively from the 6th–12th day of postnatal development. On day 12, the amount of LHRH-like immunoreactivity was consistent and comparable in all pineal glands of male and female animals examined.Supported by NIH Grant 1 R01 HD-12956  相似文献   

18.
M J Twery  R L Moss 《Peptides》1985,6(4):609-613
The effects of iontophoretically applied human pancreatic growth hormone-releasing factor (hpGRF), peptide histidine isoleucine (PHI-27), and somatostatin (SS) on the extracellular activity of single cells in the hypothalamus, thalamus, and cortex of the rat brain were studied in urethane-anesthetized, male rats. Neurons with membrane sensitivity to hpGRF, PHI-27, and SS were present in each brain region. Although neurons excited by these peptides were encountered in thalamus and hypothalamus, depression of neuronal firing was the predominant response observed. Overall, the neurons responding to hpGRF also possessed membrane sensitivity to PHI-27, whereas, the hpGRF sensitive neurons appeared to be more divided as to their ability to respond to SS. The results clearly demonstrate that hpGRF and PHI-27 are capable of affecting the membrane excitability of neurons in several brain regions. The distribution of neurons sensitive to hpGRF suggests that hypothalamic GRF, in addition to its well documented role in the regulation of pituitary growth hormone secretion, may subserve other physiological events in the rat central nervous system as a neurotransmitter and/or neuromodulator.  相似文献   

19.
Summary Antisera specific for three different regions of pancreatic proglucagon were used to examine the distribution of such immunoreactivity in rat hypothalamus. Neurons in the supraoptic and paraventricular nuclei were immunoreactive with an antiserum against glucagon, but not with antisera directed towards the aminoterminal region of proglucagon (glicentin) or the glucagon-like peptide I sequence in the carboxyl-terminal region of proglucagon. These findings confirm a previous report of glucagon-like immunoreactivity in the supraoptic and paraventricular nuclei, but indicate that, while this material is immunochemically related to glucagon, it is not derived from a proglucagon-like precursor.  相似文献   

20.
Summary This paper deals with the ultrastructure of two types of intranuclear inclusions, nuclear bodies and membranous lamellar bodies, present in hypothalamic pericytes of intact adult rats. The nuclear bodies exhibited simple and granular forms, whereas the membranous lamellar bodies were entirely made up of myelin-like membrane whorls.The occurrence of these bodies in nuclei of pericytes has never been previously reported. The origin and functional meaning of such structures is discussed in the light of recent ultrastructural and biochemical studies on nuclear inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号