首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine if there are common physicochemical features among antibodies binding the same antigenic region of a protein, B cell hybridomas were prepared against the two major antigenic regions on mammalian cytochromes c, and the nucleotide sequences encoding the monoclonal antibody (mAb) heavy (H) and light (L) chains were determined and compared. Although the genetic elements used were somewhat diverse, similarities among mAbs to a given antigenic region were observed. In particular, mAbs binding in a region situated at a bend in the antigen around residues 44 and 47 had longer complementarity-determining regions (4-5 additional amino acid residues in L1 and 1-2 in H3) than mAbs binding the other region around residues 60 and 62 located on a relatively flat surface. These observations indicate that the topography of an antigenic site and the lengths of certain complementarity-determining regions are important physicochemical properties determining, at least in part, which antibodies (B cells) will participate in an immune response to a particular site on a protein antigen.  相似文献   

2.
The epitopes (antigenic determinants) recognized by four different monoclonal antibodies on horse cytochrome c have been partially characterized by differential acetylation of lysine residues of free and antibody-bound cytochrome c. The degree of acetylation in the bound and free antigen molecule was assessed by a double-labeling procedure with [3H]acetic anhydride and [14C]acetic anhydride. Out of the 19 lysine residues of cytochrome c only very few were less reactive in the antigen-antibody complex, i.e. presumably located at the epitope for the antibody under study. The protection varied from 1.5-fold to over 20-fold lower reactivity in antibody-bound cytochrome c. The present results are complemented by previous data obtained by cross-reactivity analysis with cytochromes c from different species, with chemically modified cytochrome c derivatives, and by inhibition of proteolysis of cytochrome c in the presence of the antibodies. From the combined data we conclude that each of the four epitopes depends on the precise spatial folding of the antigen and contains residues which are brought together by the folding of the polypeptide chain. This work exemplifies that mapping of conformation-dependent epitopes can be achieved by applying a combination of mapping procedures of which each by itself provides partial information.  相似文献   

3.
High-resolution three-dimensional structure of horse heart cytochrome c   总被引:19,自引:0,他引:19  
The 1.94 A resolution three-dimensional structure of oxidized horse heart cytochrome c has been elucidated and refined to a final R-factor of 0.17. This has allowed for a detailed assessment of the structural features of this protein, including the presence of secondary structure, hydrogen-bonding patterns and heme geometry. A comprehensive analysis of the structural differences between horse heart cytochrome c and those other eukaryotic cytochromes c for which high-resolution structures are available (yeast iso-1, tuna, rice) has also been completed. Significant conformational differences between these proteins occur in three regions and primarily involve residues 22 to 27, 41 to 43 and 56 to 57. The first of these variable regions is part of a surface beta-loop, whilst the latter two are located together adjacent to the heme group. This study also demonstrates that, in horse cytochrome c, the side-chain of Phe82 is positioned in a co-planar fashion next to the heme in a conformation comparable to that found in other cytochromes c. The positioning of this residue does not therefore appear to be oxidation-state-dependent. In total, five water molecules occupy conserved positions in the structures of horse heart, yeast iso-1, tuna and rice cytochromes c. Three of these are on the surface of the protein, serving to stabilize local polypeptide chain conformations. The remaining two are internally located. One of these mediates a charged interaction between the invariant residue Arg38 and a nearby heme propionate. The other is more centrally buried near the heme iron atom and is hydrogen bonded to the conserved residues Asn52, Tyr67 and Thr78. It is shown that this latter water molecule shifts in a consistent manner upon change in oxidation state if cytochrome c structures from various sources are compared. The conservation of this structural feature and its close proximity to the heme iron atom strongly implicate this internal water molecule as having a functional role in the mechanism of action of cytochrome c.  相似文献   

4.
 In the frame of a broad study on the structural differences between the two redox forms of cytochromes to be related to the electron transfer process, the NMR solution structure of horse heart cytochrome c in the reduced form has been determined. The structural data obtained in the present work are compared to those already available in the literature on the same protein and the presence of conformational differences is discussed in the light of the experimental method employed for the structure determination. Redox-state dependent changes are analyzed and in particular they are related to the role of propionate-7 of the heme. Also some hydrogen bonds are changed upon reduction of the heme iron. A substantial similarity is observed for the backbone fold, independently of the oxidation state. At variance, some meaningful differences are observed in the orientation of a few side chains. These changes are related to those found in the case of the highly homologous cytochrome c from Saccharomyces cerevisiae. The exchangeability of the NH protons has been investigated and found to be smaller than in the case of the oxidized protein. We think that this is a characteristic of reduced cytochromes and that mobility is a medium for molecular recognition in vivo. Received: 8 June 1998 / Accepted: 13 October 1998  相似文献   

5.
To gain a better understanding of the diversity of epitopes on a protein, the specificities of 103 monoclonal antibodies to a model antigen, horse cytochrome c(cyt c), were analyzed. The antibodies were generated in in vitro monoclonal, secondary antibody responses against horse cyt c coupled to hemocyanin in splenic fragment cultures. For this assay, horse cyt c-primed murine B lymphocytes were transferred to irradiated, hemocyanin-primed recipients. A panel of seven mammalian cyts c differing at one to six residues out of 104 and cyanogen bromide-cleaved fragments of horse cyt c containing residues 1-65, 1-80, and 66-104 was used to examine the specificities of the antibodies. Twenty-two distinct reactivity patterns were observed, even though the majority of the monoclonal antibodies were found to bind in the three previously identified antigenic regions of the molecule about residues 44-47, 60-62, and 89-92. The results indicate that each of the three antigenic regions consists of multiple overlapping epitopes. Few of the antibodies directed to any given antigenic region bound polypeptide fragments inclusive of the epitope sequences, demonstrating that some antibodies were more conformationally dependent than others. Only 13% of the antibodies bound to cyanogen bromide-cleaved polypeptide fragments that together encompassed the entire length of the protein. Considering the large number of antibodies analyzed and the reoccurrence of 13 of the 22 clonotypes in different lymphocyte donors, it is likely that the antibody specificities tabulated herein approach yet do not completely enumerate the total inventory of the horse cyt c-specific B cell repertoire. The remarkable diversity for epitope recognition within antigenic regions observed here is likely to pertain to protein antigens in general, and strongly supports the widely held notion that the entire surface of a protein is potentially antigenic. The restriction of the epitopes of horse cyt c to three antigenic regions where the amino acid sequences of the mammalian cyts c differ probably results from tolerance of the mice to their own cyt c.  相似文献   

6.
Cytochromes c are characterized by the presence of a protoporphyrin IX group covalently attached to the polypeptide via one or two thioether bonds to Cys side chains. The heme attachment process, known as cytochrome c maturation, occurs posttranslationally in the periplasm (for bacterial cytochromes c) or in the mitochondrial intermembrane space (for eukaryotic cytochromes c) through a pathway dependent on the organism. It is demonstrated in this work that a mitochondrial cytochrome c expressed in Escherichia coli that undergoes maturation under control of the E. coli cytochrome c maturation factors achieves a native-like structure and stability. The recombinant protein is characterized spectroscopically (by circular dichroism (CD), absorption, and nuclear magnetic resonance (NMR) spectroscopy) and it is verified that the heme and its environment are indistinguishable from authentic horse cytochrome c. Mass spectrometry reveals that the recombinant protein is not acetylated at the N terminus, however, no significant effect on protein structure or stability is detected as a result.  相似文献   

7.
Monoclonal antibodies (mcAbs) specific to alkaline isoenzymes of horseradish peroxidase were used to characterize the antigenic properties of horseradish peroxidase. The results of a competitive binding assay indicated that monoclonal antibodies can be divided into three groups directed against distinct parts of the protein. The interaction of monoclonal antibodies with native and modified horseradish peroxidase showed also three different patterns of reactivity. Antibodies from groups I and II are directed against epitopes which are conformational and formed by tertiary structure elements. Epitopes recognized by these antibodies are sensitive to heme removal or partial denaturation of peroxidase. Antibodies from group III bind specifically with epitopes consisting of primary or secondary structure elements. The antigenic determinants recognized by antibodies from group III PO 1 and 36F 9 were shown to be linear (continuous) and formed by amino acid residues 261-267 and 271-277, respectively, as determined by the peptide scanning method (PEPSCAN). The location of revealed linear antigenic determinants in the molecular structure of peroxidase is analyzed.  相似文献   

8.
Characterization of horse cytochrome c expressed in Escherichia coli.   总被引:1,自引:0,他引:1  
We have expressed horse cytochrome c in Escherichia coli. The gene was designed with E. coli codon bias and assembled by using a recursive polymerase chain reaction method. The far-ultraviolet and near-ultraviolet/Soret circular dichroism (CD) spectra show that the structure of recombinant horse cytochrome c is the same as that of the authentic protein. CD-detected thermal denaturation studies were used to measure the thermodynamic parameters associated with two-state denaturation. The free energy of denaturation for the recombinant protein is 10.0 +/- 2.3 kcal mol(-1) at pH 4.6 and 25 degrees C, which agrees with the value for the authentic protein. The expression system will help advance our understanding of the roles of cytochrome c in electron transfer, oxidative stress, and apoptosis by allowing the production of protein variants.  相似文献   

9.
Two synthetic genes coding for human and Arabidopsis cytochrome c, respectively, have been designed and constructed, and the recombinant proteins have been over-expressed in Escherichia coli cells. Thus a comparative analysis of the two heme proteins, including horse cytochrome c as a reference, has been performed. In addition to their physico-chemical properties, the redox behavior of the three proteins has been analyzed by following the kinetics of both their reduction by flavin semiquinones (lumiflavin, riboflavin, and FMN) and oxidation by cytochrome c oxidase. The resulting data indicate that the accessibility and electrostatic charge of the active site do not differ in a significant way among the three proteins, but human cytochrome c exhibits some intriguing differences when interacting with cytochrome c oxidase that could be related to the amino acid changes underwent by the latter along evolution.  相似文献   

10.
Ultraviolet absorption and circular dichroism studies have been carried out on horse heart apo-cytochrome c and heme-free peptide fragments obtained by cyanogen bromide cleavage of the native protein. It was noted that the various peptides assume predominantly an unordered conformation in water solution. Increasing ionic strength and addition of 2-chloroethanol increase the right-handed helical content. Guanidinium hydrochloride favors the coil state. It was also demonstrated that two non-interacting helical regions of different stability are present in the apo-protein in 2-chloroethanol.  相似文献   

11.
Iodination of horse cytochrome c with the lactoperoxidase-hydrogen peroxide-iodide system results initially in the formation of the monoiodotyrosyl 74 derivative. This singly modified protein was obtained in pure form by ion exchange chromatography and preparative column electrophoresis. It shows an intact 695 nm absorption band, the midpoint potential of the native protein, a nuclear magnetic resonance spectrum which indicates an undisturbed heme crevice structure, a normal reaction with antibodies directed against native horse cytochrome c, and circular dichroic spectra in which the only changes from those of the native protein can be ascribed to the spectral properties of iodotyrosine itself. This conformationally intact derivative reacts with the succinate-cytochrome c reductase and the cytochrome c oxidase systems of beef mitochondrial particle preparations indistinguishably from the unmodified protein, showing that the region including tyrosine 74 is not involved in these enzymic electron transfer functions of the protein. The circular dichroic spectra of this derivative indicate that the minima observed at 288 and 282 nm in the spectrum of native ferricytochrome c originate from tyrosyl residue 74.  相似文献   

12.
We describe the N epsilon-acetimidylation of horse heart cytochrome c with retention of biological activity, the cleavage of the modified protein by CNBr, the separation of the fragments, and their further side-chain protection. We describe the manipulation of the amino acid sequences of the fragments by stepwise semisynthetic methods. We have prepared fragments corresponding to residues 66-78 and 66-79 of the protein, as well as the [Asp66] analogue of fragment 66-79. We have prepared the natural sequence and the [o-fluoro-Phe82] analogue of the fragment corresponding to residues 81-104 of the protein, and the [N epsilon-trifluoroacetyl-Lys79], the [N epsilon-dinitrophenyl-Lys79] and the [S-acetamidomethyl-Cys79] analogues of fragment 79-104, and the [N epsilon-Cbz-Lys81] analogue of fragment 80-104. We have coupled back the fragments of natural sequence to form a semisynthetic fragment corresponding to residues 66-104 of the protein. Modified fragments were also coupled to give analogues of the 66-104-residue sequence. In every case the homoserine residue representing methionine-80 was removed from the C-terminus of the 66-80-residue fragment and replaced by methionine on the N-terminus of the 81-104 residue fragment during the preparation of the fragments for coupling. The semisynthetic fragments are ready for specific deprotection and further coupling. We have coupled one such fragment to the (1-65)-peptide to produce semisynthetic [Hse65]cytochrome c. The product has satisfactory characteristics on chemical analysis, and on assay of its biological activity.  相似文献   

13.
Proteolysis experiments have been used to monitor the conformational transitions from an unfolded to a folded state occurring when the apo form of horse cytochrome c (cyt c) binds the heme moiety or when two fragments of cyt c form a native-like 1:1 complex. Proteinase K was used as a proteolytic probe, in view of the fact that the broad substrate specificity of this protease allows digestion at many sites along a polypeptide chain. The rather unfolded apo form of cyt c binds heme with a concomitant conformational transition to a folded species characterized by an enhanced content of helical secondary structure. While the holoprotein is fully resistant to proteolytic digestion and the apoprotein is digested to small peptides, the noncovalent complex of the apoprotein and heme exhibits an intermediate resistance to proteolysis, in agreement with the fact that the more folded structure of the complex makes the protein substrate more resistant to proteolysis. The noncovalent native-like complex of the two fragments 1-56 and 57-104 of cyt c, covering the entire polypeptide chain of 104 residues of the protein, is rather resistant to proteolysis, while the individual fragments are easily digested. Fragment 57-104 is fast degraded to several peptides, while fragment 1-56 is slowly degraded stepwise from its C-terminal end, leading initially mostly to fragments 1-48 and 1-40 and, at later stages of proteolysis, fragments 1-38, 1-35, 1-33, and 1-31. Thus, proteolysis data indicate that the heme containing fragment 1-56 has a rather compact core and a C-terminal flexible tail. Upon prolonged incubation of the complex of fragments 1-56 and 57-104 (nicked cyt c) with proteinase K, a chain segment is removed from the nicked protein, leading to a gapped protein complex of fragments of 1-48 and 57-104 and, on further digestion, fragments 1-40 and 57-104. Of interest, the chain segment being removed by proteolysis of the complex matches the omega-loop which is evolutionarily removed in cyt c of microbial origin. Overall, rates and/or resistance to proteolysis correlates well with the extent of folding of the protein substrates, as deduced from circular dichroism measurements. Thus, our results underscore the utility of proteolytic probes for analyzing conformational and dynamic features of proteins. Finally, a specific interest of the cyt c fragment system herewith investigated resides in the fact that the fragments are exactly the exon products of the cyt c gene.  相似文献   

14.
Yeast cytochrome c peroxidase and horse heart cytochrome c have been cocrystallized in a form suitable for x-ray diffraction studies and the structure determined at 3.3 A. The asymmetric unit contains a dimer of the peroxidase which was oriented and positioned in the unit cell using molecular replacement techniques. Similar attempts to locate the cytochrome c molecules were unsuccessful. The peroxidase dimer model was subjected to eight rounds of restrained parameters least squares refinement after which the crystallographic R factor was 0.27 at 3.3 A. Examination of a 2Fo-Fc electron density map showed large "empty" regions between peroxidase dimers with no indication of cytochrome c molecules. Electrophoretic analysis of the crystals demonstrated the presence of the peroxidase and cytochrome c in an approximate equal molar ratio. Therefore, while cytochrome c molecules are present in the unit cell they are orientationally disordered and occupy the space between peroxidase dimers.  相似文献   

15.
Seven populations of site-specific antibodies were isolated from each of three sera of rabbits immunized against glutaraldehyde-polymerized horse cytochrome c. The antibodies were separated using an immunoadsorption scheme which employed the following cytochromes c: horse, beef, guanaco, rabbit, mouse testicular, pigeon, and the cyanogen-bromide cleaved fragment of the rabbit protein containing residues 1 to 65. The monovalent, antigen-binding fragments of the antibodies (Fab') gave 1:1 stoichiometries with native horse cytochrome c in fluorescence quenching assays. Cross-reactivities with heterologous cytochromes c using fluorescence quenching and a modified Farr assay demonstrated that the antigenic determinants are situated around residues 44, 60, and 89/92, four of the six amino acid sequence positions where horse and rabbit cytochromes c differ. The remaining two differences occur at residues 47 and 62. The apparent lack of immunogenicity of these two substitutions may result from the presence of the more immunogenic residues 44 and 60 nearby. Of the seven antibody populations isolated, four were shown to bind in the region of residues 89 and 92. Since several cytochromes c have amino acid sequence differences from the horse protein at either of these two residue positions, it was possible to fractionate the antibodies directed against this complex site on the basis of subtle specificity differences between them. Two antibody populations bind in the region of residue 44. One of these is specific for proline at that position, while the other antibody population also binds to cytochrome c containing glutamic acid at position 44. The remaining antibody population binds in the region of the lysine residue at position 60. Each of the seven site-specific antibody populations binds effectively to any cytochrome c having a suitable amino acid sequence in the antigenic determinant regardless of any residue differences from the immunogen outside of that area. It was also demonstrated that these seven antibody populations represent the totality of the antibodies elicited in rabbits against horse cytochrome c, since the immunoadsorbants bound all the antibodies specific for the native protein. Furthermore, the rabbit antisera contained no other antibody population that could bind to the conformationally disturbed, cyanogen bromide-cleaved fragment of horse cytochrome c containing residues 1 to 65, making it appear that there were no antibodies elicited against a "processed" form of cytochrome c.  相似文献   

16.
C/57 black mice were immunized with beef heart cytochrome c oxidase, generating 48 hybrid cell lines that secrete antibodies against the different subunits of the enzyme. Immunoblot analysis showed reactions with 7 of the 13 subunits. Among the monoclonal antibodies produced, only those to subunit II gave significant inhibition; these inhibited the enzyme activity completely and prevented cytochrome c binding to the enzyme. Epitope mapping studies indicate that a peptide including residues 200-227 reacts with the antibody, suggesting that the C-terminus of the protein is essential for the binding of this antibody. The carboxyl modifying reagent 1-ethyl-3-[3-(trimethylammonio)propyl]carbodiimide (ETC) was chosen to investigate further the relationship between antibody and cytochrome c binding domains. ETC caused 50% inhibition of the enzyme activity with a first-order time during the first 20 min; a slower reaction over 3 h resulted in 90% inhibition. Cytochrome c binding to the oxidase was inhibited to a similar extent as cytochrome c oxidation, and protection against both effects was afforded by the presence of cytochrome c during ETC modification. Anion-exchange of FPLC of the modified forms of cytochrome oxidase revealed extensive inhomogeneity, indicating random derivatization of a number of different carboxyls even during the first-order reaction, and precluding identification of carboxyl residues related to a specific phase of the reaction. Cytochrome c and the subunit II-specific antibody protected against radioactive labeling of subunit II by ETC in the presence of [14C]glycine ethyl ester, demonstrating that the antibody and cytochrome c occupy significant and overlapping areas on the subunit II surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The antigenic relationships among 11 strains of Japanese encephalitis (JE) virus were analyzed by using monoclonal antibodies (NARMA) against the Nakayama-RFVL strain in hemagglutination-inhibition (HI) and neutralization (Nt) tests. Of the 14 JE virus-specific HI antibodies, all except NARMA 5 showed Nt reactivity with the homologous strain. The HI and Nt titers of these antibodies were not parallel. The 14 antibodies included the following characteristic antibodies: NARMA 3 is a species-specific antibody with HI and Nt reactivities against JE virus, NARMA 13 is a species-specific HI antibody, NARMA 6 is a Nakayama strain-specific antibody with HI and Nt reactivities, and NARMA 5 is a Nakayama strain-specific HI antibody. The 11 strains of JE virus were divided into four major antigenic groups. However, slight antigenic differences were found among some strains of the same group. Furthermore, competitive binding assays were performed to determine the distribution of antigenic determinants by enzyme-linked immunosorbent assay. The results suggest the existence of at least five HI sites on the JE virus virion, and indicate that the JE species-specific HI site and the flavivirus genus-specific HI site are topologically distinct.  相似文献   

18.
The oxidation of ferrocytochrome c mediated by cytochrome c oxidase was investigated in the presence of ferricytochrome c, trifluoroacetyl-cytochrome c, the heme fragments Hse65-[1-65] and Hse80-[1-80] and their respective porphyrin derivatives, as well as carboxymethylated apoprotein and related fragments, polycations, salts and neutral additives. The inhibition of the redox reaction by salts and neutral molecules, even if in theoretical agreement with their effect on electrostatic interactions, may alternatively be interpreted in terms of hydrophobicity. The latter can account for the inhibitory properties of trifluoroacetylated ferricytochrome c, similar to those of ferricytochrome c. On the assumption that the inhibitory properties of some of the investigated derivatives monitor their binding affinities to the cytochrome c oxidase at the cytochrome c binding sites, the experimental results do not confirm a primarily electrostatic character for the cytochrome c/cytochrome c oxidase association process. Strong indication was found that the cytochrome c C-terminal sequence is critically involved in the complex formation. Conformational studies by circular dichroism measurements and IR spectroscopy in solution and in solid state respectively, show that some of the derivatives examined may possibly acqkuire in the binding process to the oxidase, as secondary structure similar to that present in the native cytochrome c.  相似文献   

19.
Monoclonal antibodies (MAbs) were prepared against native cytochrome f (cyt f) isolated from turnip leaves. The two MAbs obtained, designated MAb-JB2 and MAb-ED4, were Western blot positive to purified turnip cytochrome f and also reacted with inside-out (ISO) but not right-side-out (RSO) spinach thylakoid membranes. MAb-ED4 reacted with a covalent adduct formed by crosslinking cyt f and plastocyanin (PC), whereas MAb-JB2 did not. In contrast, MAb-JB2 reacted with the isolated cyt b6/f complex but MAb-ED4 did not. These results indicate that MAb-JB2 binds to cyt f at or near the PC binding site on f, whereas MAb-ED4 binds to a portion of cyt f which is not exposed in the cyt b6/f complex. The location of the epitopes in the primary sequence of cyt f was determined by trypsin hydrolysis, HPLC separation of tryptic peptides, and ELISA identification of the purified peptides. The molecular weights of the purified peptides, determined by gel exclusion chromatography, were found to be 5040 and 3130 Da for MAb-JB2 and MAb-ED4, respectively. Amino acid sequencing showed that the first eight amino acids of the MAb-ED4 positive peptide were L-D-Q-P-L-T-S-N. These results suggest that the 3130-Da peptide has 28 amino acids extending from Leu 223 to Arg 250. This peptide is located on the N-terminal (lumen) side of the postulated membrane-spanning sequence. The first eight amino acids of the MAb-JB2-positive peptide were N-I-L-V-I-G-P-V. This sequence and the peptide molecular weight indicate that the epitope for MAb-JB2 is located within a 44-amino acid peptide extending from Asn 111 to Arg 154.  相似文献   

20.
Protection and deprotection of horse cytochrome c   总被引:1,自引:0,他引:1  
The last step in the semisynthesis of horse cytochrome c analogues (formation of the bond 65-66) requires the conformation of the complex between two complementary fragments, (1-65) lactone and (66-104). The fragments can be obtained from a limited degradation with cyanogen bromide. The amino component in this reaction can also be obtained from organo chemical synthesis in which the C-terminal fragment (81-104) is required in a selectively protected form. The latter is available from a cyanogen bromide degradation of ubiquitously protected cytochrome c. The details of the protection/deprotection reaction and the properties of nonadecamethylsulfonylethyloxycarbonyl cytochrome c are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号