首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The organization and evolution of the subtelomeric and pericentromeric regions of human chromosomes exhibit unique characteristics compared to other regions of the genome. As shown in Fig. 1 the functional elements of the centromere and telomere are comprised of highly repetitive DNA sequences, which are responsible for carrying out the main mechanistic duties of these two regions: chromosome segregation and end replication, respectively. The nature of the repeats in these two regions and their function have been reviewed separately and, therefore, will not be discussed in more detail here (Sullivan et al., 1996, 2001; McEachern et al., 2000; Henikoff et al., 2001). Adjacent to these functional element regions, the centromere and telomere regions share an interesting architecture as depicted in Fig. 1. For both pericentromeric and subtelomeric regions, blocks of recent genomic duplications form a zone of shared sequence homologies between certain subsets of human chromosomes. The dynamic nature and evolutionary history of these regions and the unique DNA sequence adjacent to them will be the focus of this review.  相似文献   

2.
The glycolytic pathway of the Kinetoplastida is organized in a unique manner: the majority of its enzymes are contained in organelles called glycosomes. In this article Paul Michels and Fred Opperdoes argue that the glycosomes are equivalent to the microbodies and peroxisomes identified in other eukaryotic cells. They explore the possible evolutionary origin of the glycosome by comparing many of its structural and functional properties with those of other members of the microbody family and with some features of other organelles, the mitochondria and chloroplasts, which have been studied in much more detail.  相似文献   

3.
Two techniques that make it possible to isolate telomere DNA are presented, using sheep as an example. The first technique is based upon the screening of a sheep BAC library with PCR amplified DNA segments preserved from high-power laser beam irradiation. Twenty-three BACs hybridising to 13 subtelomeric regions in sheep and goats were obtained (out of 27 in the sheep complement), of which 13 recognised more than one region, telomeric or not. Twenty-three microsatellites were isolated from these BACs and 22 were genetically mapped on the sheep international genetic map, always consistently with the cytogenetical localisation in 17 cases out of 22. These results are discussed. The second technique is based upon the selective cloning of subtelomeric enriched DNA. Preliminary results were obtained by this approach.  相似文献   

4.
Previous theories relating the origin of feathers to flight or to heat conservation are considered to be inadequate. There is need for a model of feather evolution that gives attention to the function and adaptive advantage of intermediate structures. The present model attempts to reveal and to deal with, the spectrum of complex questions that must be considered. In several genera of modern lizards, scales are elongated in warm climates. It is argued that these scales act as small shields to solar radiation. Experiments are reported that tend to confirm this. Using lizards as a conceptual model, it is argued that feathers likewise arose as adaptations to intense solar radiation. Elongated scales are assumed to have subdivided into finely branched structures that produced a heat-shield, flexible as well as long and broad. Associated muscles had the function of allowing the organism fine control over rates of heat gain and loss: the specialized scales or early feathers could be moved to allow basking in cool weather or protection in hot weather. Subdivision of the scales also allowed a close fit between the elements of the insulative integument. There would have been mechanical and thermal advantages to having branches that interlocked into a pennaceous structure early in evolution, so the first feathers may have been pennaceous. A versatile insulation of movable, branched scales would have been a preadaptation for endothermy. As birds took to the air they faced cooling problems despite their insulative covering because of high convective heat loss. Short glides may have initially been advantageous in cooling an animal under heat stress, but at some point the problem may have shifted from one of heat exclusion to one of heat retention. Endothermy probably evolved in conjunction with flight. If so, it is an unnecessary assumption to postulate that the climate cooled and made endothermy advantageous. The development of feathers is complex and a model is proposed that gives attention to the fundamental problems of deriving a branched structure with a cylindrical base from an elongated scale.  相似文献   

5.
6.
Gene evolution has long been thought to be primarily driven by duplication and rearrangement mechanisms. However, every evolutionary lineage harbours orphan genes that lack homologues in other lineages and whose evolutionary origin is only poorly understood. Orphan genes might arise from duplication and rearrangement processes followed by fast divergence; however, de novo evolution out of non-coding genomic regions is emerging as an important additional mechanism. This process appears to provide raw material continuously for the evolution of new gene functions, which can become relevant for lineage-specific adaptations.  相似文献   

7.
The evolutionary origin of hedgehog proteins   总被引:2,自引:0,他引:2  
  相似文献   

8.
The human HLA-DR3 haplotype consists of two functional genes (DRB1*03 and DRB3*01) and one pseudogene (DRB2), arranged in the order DRB1... DRB2... DRB3 on the chromosome. To shed light on the origin of the haplotype, we sequenced 1480 nucleotides of the HLA-DRB2 gene and aong stretches of two other genes, Gogo-DRB2 from a gorilla, Sylvia and Patr-DRB2 from a chimpanzee, Hugo. All three sequences (HLA-DRB2, Gogo-DRB2, Patr-DRB2) are pseudogenes. The HLA-DRB2 and Gogo-DRB2 pseudogenes lack exon 2 and contain a twenty-nucleotide deletion in exon 3, which destroys the correct translational reading frame and obliterates the highly conserved cysteine residue at position 173. The Patr-DRB2 pseudogene lacks exons 1 and 2; it does not contain the twenty-nucleotide deletion, but does contain a characteristic duplication of that part of exon 6 which codes for the last four amino acid residues of the cytoplasmic region. When the nucleotide sequences of these three genes are compared to those of all other known DRB genes, the HLA-DRB2 is seen as most closely related to Gogo-DRB2, indicating orthologous relationship between the two sequences. The Patr-DRB2 gene is more distantly related to these two DRB2 genes and whether it is orthologous to them is uncertain. The three genes are in turn most closely related to HLA-DRBVI (the pseudogene of the DR2 haplotype) and Patr-DRB6 (another pseudogene of the Hugo haplotype), followed by HLA-DRB4 (the functional but nonpolymorphic gene of the DR4 haplotype). These relationships suggest that these six genes evolved from a common ancestor which existed before the separation of the human, gorilla, and chimpanzee lineages. The DRB2 and DRB6 have apparently been pseudogenes for at least six million years (myr). In the human and the gorilla haplotype, the DRB2 pseudogene is flanked on each side by what appear to be related genes. Apparently, the DR3 haplotype has existed in its present form for more than six myr.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M86691–94.  相似文献   

9.
10.
Progress on the evolutionary origin and diversification of feathers has been hampered by conceptual problems and by the lack of plesiomorphic feather fossils. Recently, both of these limitations have been overcome by the proposal of the developmental theory of the origin of feathers, and the discovery of primitive feather fossils on nonavian theropod dinosaurs. The conceptual problems of previous theories of the origin of feathers are reviewed, and the alternative developmental theory is presented and discussed. The developmental theory proposes that feathers evolved through a series of evolutionary novelties in developmental mechanisms of the follicle and feather germ. The discovery of primitive and derived fossil feathers on a diversity of coelurosaurian theropod dinosaurs documents that feathers evolved and diversified in nonavian theropods before the origin of birds and before the origin of flight. The morphologies of these primitive feathers are congruent with the predictions of the developmental theory. Alternatives to the theropod origin of feathers are critique and rejected. Hypotheses for the initial function of feathers are reviewed. The aerodynamic theory of feather origins is falsified, but many other functions remain developmentally and phylogenetically plausible. Whatever their function, feathers evolved by selection for a follicle that would grow an emergent tubular appendage. Feathers are inherently tubular structures. The homology of feathers and scales is weakly supported. Feathers are composed of a suite of evolutionary novelties that evolved by the duplication, hierarchical organization, interaction, dissociation, and differentiation of morphological modules. The unique capacity for modular subdivision of the tubular feather follicle and germ has fostered the evolution of numerous innovations that characterize feathers. The evolution of feather keratin and the molecular basis of feather development are also discussed.  相似文献   

11.
Urochordates are the only animals that produce cellulose, a polysaccharide existing primarily in the extracellular matrices of plant, algal, and bacterial cells. Here we report a Ciona intestinalis homolog of cellulose synthase, which is the core catalytic subunit of multi-enzyme complexes where cellulose biosynthesis occurs. The Ciona cellulose synthase gene, Ci-CesA, is a fusion of a cellulose synthase domain and a cellulase (cellulose-hydrolyzing enzyme) domain. Both the domains have no animal homologs in public databases. Exploiting this fusion of atypical genes, we provided evidence of a likely lateral transfer of a bacterial cellulose synthase gene into the urochordate lineage. According to fossil records, this likely lateral acquisition of the cellulose synthase gene may have occurred in the last common ancestor of extant urochordates more than 530 million years ago. Whole-mount in situ hybridization analysis revealed the expression of Ci-CesA in C. intestinalis embryos, and the expression pattern of Ci-CesA was spatiotemporally consistent with observed cellulose synthesis in vivo. We propose here that urochordates may use a laterally acquired homologous gene for an analogous process of cellulose synthesis.Electronic Supplementary Material Supplementary material is available in the online version of this article at Edited by D. Tautz  相似文献   

12.
The origin of the mammalian neocortex in usually considered as an improvement in the structure of the brain. Alternatively, I suggest that the mammalian neocortex arose as a consequence of contingent adaptations in which there was no specific selection for more elaborate cognitive abilities. In primitive mammals, the adaptation to nocturnal life produced a reduction of the optic tectum (superior colliculus). In addition, the development of the olfactory system triggered the development of the cerebral cortex. It is proposed that, since both the optic tectum and the cerebral cortex are laminar structures, the growing cortex replaced the tectum in many integratory functions. When mammals reinvaded diurnal niches, the optic tectum did not redevelop, and the cerebral cortex remained the main integratory and perceptual system. This is a case of irreversible reduction of an organ. In reptiles and especially in birds, although there was also an increase in brain size (associated with higher cognitive capacities), the optic tectum grew in size and complexity and the forebrain grew largely as a nonlaminar structure (except the Wulst in birds). Therefore, the origin of the cerebral cortex resulted from the combination of adaptations to nocturnality and the development of olfactory-driven behavior, and its origin is not directly related to higher cognitive capacities.  相似文献   

13.
14.
Studies of our Laboratory in the field of molecular and evolutionary endocrinology have allowed us to put forward a hypothesis about evolutionary origin of endocrine and other diseases of human and animals. This hypothesis is considered using a model of hormonal signaling systems. It is based on the concept formulated by the authors about molecular defects in hormonal signaling systems as the key causes of endocrine diseases; on evolutionary conservatism of hormonal signaling systems, which stems logically from the authors’ concept of the prokaryotic genesis and endosymbiotic emergence in the course of evolution of chemosignaling systems in the higher eukaryotes; from the fact that the process of formation of hormonal signaling systems with participation of endosymbiosis including the horizontal transfer of genes is accompanied by transfer not only of normal, but also of the defected genetic material. There are considered examples of the principal possibility of transfer of defected genes between bacteria and eukaryotic organisms. Analysis of the current literature allows suggesting inheritance of pathogenic factors from evolutionary ancestors in the lineage prokaryotes—lower eukaryotes—higher eukaryotes.  相似文献   

15.
Studies of the origin of evolutionary novelties (novel traits, feeding modes, behaviours, ecological niches, etc.) have considered a number of taxa experimenting with new body plans, allowing them to occupy new habitats and exploit new trophic resources. In the marine realm, colonization of pelagic environments by marine fishes occurred recurrently through time. Stingrays (Myliobatiformes) are a diverse clade of batoid fishes commonly known to possess venomous tail stings. Current hypotheses suggest that stingrays experimented with a transition from a benthic to a pelagic/benthopelagic habitat coupled with a transition from a non-durophagous diet to extreme durophagy. However, there is no study detailing macroevolutionary patterns to understand how and when habitat shift and feeding specialization arose along their evolutionary history. A new exquisitely preserved fossil stingray from the Eocene Konservat-Lagerstätte of Bolca (Italy) exhibits a unique mosaic of plesiomorphic features of the rajobenthic ecomorph, and derived traits of aquilopelagic taxa, that helps to clarify the evolutionary origin of durophagy and pelagic lifestyle in stingrays. A scenario of early evolution of the aquilopelagic ecomorph is proposed based on new data, and the possible adaptive meaning of the observed evolutionary changes is discussed. The body plan of †Dasyomyliobatis thomyorkei gen. et sp. nov. is intermediate between the rajobenthic and more derived aquilopelagic stingrays, supporting its stem phylogenetic position and the hypothesis that the aquilopelagic body plan arose in association with the evolution of durophagy and pelagic lifestyle from a benthic, soft-prey feeder ancestor.  相似文献   

16.
On the evolutionary origin of aging   总被引:3,自引:0,他引:3  
It is generally believed that the first organisms did not age, and that aging thus evolved at some point in the history of life. When and why this transition occurred is a fundamental question in evolutionary biology. Recent reports of aging in bacteria suggest that aging predates the emergence of eukaryotes and originated in simple unicellular organisms. Here we use simple models to study why such organisms would evolve aging. These models show that the differentiation between an aging parent and a rejuvenated offspring readily evolves as a strategy to cope with damage that accumulates due to vital activities. We use measurements of the age-specific performance of individual bacteria to test the assumptions of the model, and find evidence that they are fulfilled. The mechanism that leads to aging is expected to operate in a wide range of organisms, suggesting that aging evolved early and repeatedly in the history of life. Aging might thus be a more fundamental aspect of cellular organisms than assumed so far.  相似文献   

17.
The evolutionary sequence is being reexamined experimentally from a "Big Bang"origin to the protocell and from the emergence of protocell and variety of species to Darwin's mental power (mind) and society (The Descent of Man). A most fundamentally revisionary consequence of experiments is an emphasis on endogenous ordering. This principle, seen vividly in ordered copolymerization of amino acids, has had new impact on the theory of Darwinian evolution and has been found to apply to the entire sequence. Herein, I will discuss some problems of dealing with teaching controversial subjects.  相似文献   

18.
19.
Because of an extra whole-genome duplication, zebrafish and other teleosts have two copies of genes that are present in a single copy in tetrapod genomes. Some zebrafish genes, however, are present in triplicate. For example, the nodal-related genes encode secreted proteins of the transforming growth factor beta superfamily that are required in all vertebrates to induce the mesoderm and endoderm, pattern all three germ layers, and establish the left-right axis. Zebrafish have three nodal-related genes, called ndr1/squint, ndr2/cyclops, and ndr3/southpaw. As part of an analysis of enhancer elements controlling zebrafish nodal-related gene expression, we analyzed the nodal loci in the sequenced genomes of five teleost species and four tetrapod species. Each teleost genome contains three nodal-related genes, indicating that squint, cyclops, and southpaw orthologues were present early in the teleost lineage. The genes flanking the nodal-related genes are also conserved, demonstrating a high degree of conserved synteny. Although we found little homology outside of the coding sequences in this region, pufferfish enhancer sequences work in zebrafish embryos to drive reporter gene expression in the squint expression pattern. This indicates a high degree of functional conservation of enhancer elements within the teleosts. We conclude that the ancestral squint and cyclops genes arose during the teleost-specific whole-genome duplication event and that southpaw emerged from a subsequent duplication event involving ancestral squint.  相似文献   

20.
Dekker C  Willison KR  Taylor WR 《Proteins》2011,79(4):1172-1192
An analysis of the apical domain of the Group-I and Group-II chaperonins shows that they have structural similarities to two different protein folds: a "swivel-domain" phosphotransferase and a thioredoxin-like peroxiredoxin. There is no significant sequence similarity that supports either similarity and the degree of similarity based on structure is comparable but weak for both relationships. Based on possible evolutionary transitions, we deduced that a phosphotransferase origin would require both a large insertion and deletion of structure whereas a peroxiredoxin origin requires only a peripheral rearrangement, similar to an internal domain-swap. We postulate that this change could have been triggered by the insertion of a peroxiredoxin into the ATPase domain that led to the modern chaperonin domain arrangement. The peroxidoxin fold is the most highly embellished member of the thioredoxin super-family and the insertion event may have "overloaded" the core, leading to a rearrangement. A peroxiredoxin origin for the domain also provides a functional explanation, as the peroxiredoxins can act as chaperones when they adopt a multimeric ring complex, similar to the chaperonin subunit configuration. In addition, several of the GroEL apical domain hydrophobic residues which interact with the unfolded protein are located in a position that corresponds to the protein substrate binding region of the peroxiredoxin fold. We suggest that the origin of the ur-chaperonin from a thioredoxin/peroxiredoxin fold might also account for the number of thioredoxin-fold containing proteins that interact with chaperonins, such as tubulin and phosducin-like proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号