首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

A C-to-T single nucleotide polymorphism (SNP) located at position 1858 of human protein tyrosine phosphatase, non-receptor type 22 (PTPN22) complementary DNA (cDNA) is associated with an increased risk of systemic lupus erythematosus (SLE). How the overall activity of PTPN22 is regulated and how the expression of PTPN22 differs between healthy individuals and patients with lupus are poorly understood. Our objectives were to identify novel alternatively spliced forms of PTPN22 and to examine the expression of PTPN22 isoforms in healthy donors and patients with lupus.

Methods

Various human PTPN22 isoforms were identified from the GenBank database or amplified directly from human T cells. The expression of these isoforms in primary T cells and macrophages was examined with real-time polymerase chain reaction. The function of the isoforms was determined with luciferase assays. Blood samples were collected from 49 subjects with SLE and 15 healthy controls. Correlation between the level of PTPN22 isoforms in peripheral blood and clinical features of SLE was examined with statistical analyses.

Results

Human PTPN22 was expressed in several isoforms, which differed in their level of expression and subcellular localization. All isoforms except one were functionally interchangeable in regulating NFAT activity. SLE patients expressed higher levels of PTPN22 than healthy individuals and the levels of PTPN22 were negatively correlated with the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SLICC-DI).

Conclusions

The overall activity of PTPN22 is determined by the functional balance among all isoforms. The levels of PTPN22 isoforms in peripheral blood could represent a useful biomarker of SLE.  相似文献   

2.
3.
4.
T cells from patients with systemic lupus erythematosus (SLE) exhibit reduced expression of the critical T cell receptor (TCR)-associated CD3ζ signaling chain and are poor producers of the vital cytokine IL-2. By oligonucleotide pulldown and mass spectrometry discovery approaches, we identified the splicing regulator serine/arginine-rich splicing factor (SRSF) 1 or splicing factor 2/alternative splicing factor (SF2/ASF) to be important in the expression of CD3ζ chain. Importantly, increases in the expression of SRSF1 rescued IL-2 production in T cells from patients with SLE. In this study, we investigated the regulation of SRSF1 expression in resting and activated human T cells. We found that T cell stimulation induced a rapid and significant increase in mRNA expression of SRSF1; however, protein expression levels did not correlate with this increase. Co-engagement of CD28 induced a similar mRNA induction and reduction in protein levels. Proteasomal but not lysosomal degradation was involved in this down-regulation as evidenced by blocking with specific inhibitors MG132 and bafilomycin, respectively. Immunoprecipitation studies showed increased ubiquitination of SRSF1 in activated T cells. Interestingly, T cells from patients with SLE showed increased ubiquitination of SRSF1 when compared with those from healthy individuals. Our results demonstrate a novel mechanism of regulation of the splicing factor SRSF1 in human T cells and a potential molecular mechanism that controls its expression in SLE.  相似文献   

5.
Zhang C  Zhang J  Yang B  Wu C 《Cytokine》2008,42(3):345-352
Recent evidence from several studies indicated that IL-17-producing Th17 cells can represent the key effector cells in the induction and development of autoimmune disorders. Cyclosporine A (CsA) is a commonly used immunosuppressant to treat lots of autoimmune diseases including rheumatoid arthritis (RA). Here, we demonstrated that PBMCs and purified CD4+ T cells from healthy individuals and patients with RA could be induced to produce large amounts of IL-17 after stimulation with anti-CD3 plus anti-CD28 mAbs. Phenotypic analysis indicated that the majority of IL-17-producing cells were Th17 cells with memory phenotype. The addition of CsA into cell cultures significantly inhibited the IL-17 production by Th17 cells at protein and at mRNA levels. Compared to the PBMCs from normal individuals, PBMCs from the patients with RA produced higher levels of IL-17 that was also significantly inhibited by CsA both at protein and at mRNA levels. The mechanism might be the effect of CsA on the T cells activation because the expression of CD69 and CD25 molecules on T cells was markedly reduced in the presence of CsA. Taken together, these results demonstrated that CsA suppressed the IL-17 production and inhibited the Th17 cells differentiation from both healthy individuals and patients with RA.  相似文献   

6.
Proteins differentially expressed in peripheral blood mononuclear cells (PBMCs) from systemic lupus erythematosus (SLE) patients versus Normal controls were identified by 2-DE and MALDI-MS. Thus, S100A9 expression was significantly increased in SLE PBMCs relative to Normal PBMCs at both mRNA and protein levels. Increased S100A9 levels in SLE PBMCs correlated positively with the abnormal presence of low-density granulocytes (LDGs) detected by flow-cytometry in the mononuclear cell fractions. Another set of proteins that were differentially expressed in SLE PBMCs formed S100A9-independent clusters, suggesting that these differences in protein expression are in fact reflecting changes in the abundance of specific cell types. In SLE PBMCs spots of the two S100A9 isoforms, S100A9-l and S100A9-s, and their phosphorylated counterparts were identified and confirmed to be phosphorylated at Thr113 by MS/MS analyses. In addition, the phorbol ester PMA alone or in combination with ionomycin induced a stronger increase in threonine phosphorylation of S100A9 in SLE than in Normal PBMCs, while the same stimuli caused the opposite effect on phosphorylation and activation of Erk1/2, suggesting the existence of an abnormal S100A9 signaling in SLE PBMCs. Therefore, the expansion and activation of LDGs in SLE seems to underlie this prominent S100A9 signature.  相似文献   

7.
Considerable evidence points to a role for B lymphocyte stimulator (BLyS) overproduction in murine and human systemic lupus erythematosus (SLE). Nevertheless, the correlation between circulating levels of BLyS protein and disease activity in human SLE is modest at best. This may be due to an inadequacy of the former to reflect endogenous BLyS overproduction faithfully, in that steady-state protein levels are affected not just by production rates but also by rates of peripheral utilization and excretion. Increased levels of BLyS mRNA may better reflect increased in vivo BLyS production, and therefore they may correlate better with biologic and clinical sequelae of BLyS overexpression than do circulating levels of BLyS protein. Accordingly, we assessed peripheral blood leukocyte levels of BLyS mRNA isoforms (full-length BLyS and DeltaBLyS) and plasma BLyS protein levels in patients with SLE, and correlated these levels with laboratory and clinical features. BLyS protein, full-length BLyS mRNA, and DeltaBLyS mRNA levels were greater in SLE patients (n = 60) than in rheumatoid arthritis patients (n = 60) or normal control individuals (n = 30). Although full-length BLyS and DeltaBLyS mRNA levels correlated significantly with BLyS protein levels in the SLE cohort, BLyS mRNA levels were more closely associated with serum immunoglobulin levels and SLE Disease Activity Index scores than were BLyS protein levels. Moreover, changes in SLE Disease Activity Index scores were more closely associated with changes in BLyS mRNA levels than with changes in BLyS protein levels among the 37 SLE patients from whom repeat blood samples were obtained. Thus, full-length BLyS and DeltaBLyS mRNA levels are elevated in SLE and are more closely associated with disease activity than are BLyS protein levels. BLyS mRNA levels may be a helpful biomarker in the clinical monitoring of SLE patients.  相似文献   

8.
目的:研究Toll样受体9(TLR-9)在系统性红斑狼疮(SLE)患者外周血单个核细胞(PBMCs)上的表达水平及SLE患者血清白介素-10水平,探讨发病机制。方法:从23例活动期、19例缓解期SLE患者和20例正常对照组中分离PBMCs,利用反转录-聚合酶链反应(RT-PCR)法检测PBMCs中TLR9 mRNA的表达水平,利用酶联免疫吸附试验法检测其血清白介素-10水平。结果:活动期SLE患者PBMCs的TLR-9mRNA表达高于缓解组(P<0.01)及正常对照(P<0.01),缓解期和正常对照组相比,差异无统计学意义(P>0.05)。SLE活动期患者血清IL-10水平显著高于缓解期患者(P<0.01),并均高于正常对照组(P<0.01)。结论:活动期SLE患者PBMC的TLR9 mRNA的表达水平增高;并且活动期及缓解期SLE患者血清IL-10水平升高可能与TLR9 mRNA表达的上调相关。  相似文献   

9.
10.
11.
Considerable evidence points to a role for B lymphocyte stimulator (BLyS) overproduction in murine and human systemic lupus erythematosus (SLE). Nevertheless, the correlation between circulating levels of BLyS protein and disease activity in human SLE is modest at best. This may be due to an inadequacy of the former to reflect endogenous BLyS overproduction faithfully, in that steady-state protein levels are affected not just by production rates but also by rates of peripheral utilization and excretion. Increased levels of BLyS mRNA may better reflect increased in vivo BLyS production, and therefore they may correlate better with biologic and clinical sequelae of BLyS overexpression than do circulating levels of BLyS protein. Accordingly, we assessed peripheral blood leukocyte levels of BLyS mRNA isoforms (full-length BLyS and ΔBLyS) and plasma BLyS protein levels in patients with SLE, and correlated these levels with laboratory and clinical features. BLyS protein, full-length BLyS mRNA, and ΔBLyS mRNA levels were greater in SLE patients (n = 60) than in rheumatoid arthritis patients (n = 60) or normal control individuals (n = 30). Although full-length BLyS and ΔBLyS mRNA levels correlated significantly with BLyS protein levels in the SLE cohort, BLyS mRNA levels were more closely associated with serum immunoglobulin levels and SLE Disease Activity Index scores than were BLyS protein levels. Moreover, changes in SLE Disease Activity Index scores were more closely associated with changes in BLyS mRNA levels than with changes in BLyS protein levels among the 37 SLE patients from whom repeat blood samples were obtained. Thus, full-length BLyS and ΔBLyS mRNA levels are elevated in SLE and are more closely associated with disease activity than are BLyS protein levels. BLyS mRNA levels may be a helpful biomarker in the clinical monitoring of SLE patients.  相似文献   

12.
13.
Behçet’s disease (BD) is an autoimmune disease of unknown etiology. Interleukin-28A (IL-28A) promotes immune responses and may participate in the pathogenesis of autoimmune diseases. To examine the role of IL-28A in the pathogenesis of BD, we measured the expression of IFN-γ and IL-17 by IL-28A-stimulated peripheral blood mononuclear cells (PBMCs) from 19 patients with BD and 16 healthy individuals. We found that IFN-γ and IL-17 were undetectable in the sera from BD patients and control subjects. The mRNA expression and protein production of IFN-γ by IL-28A-stimulated PBMCs from BD patients were significantly increased compared to healthy individuals. No significant difference was observed in the mRNA expression and protein production of IL-17 by IL-28A-stimulated PBMCs between BD patients and normal individuals.  相似文献   

14.

Introduction

Using oligonucleotide microarray, many IFN-inducible genes have been found to be highly expressed in peripheral blood mononuclear cells (PBMCs) from most patients with systemic lupus erythematosus (SLE). Among these IFN-inducible genes, IFN-induced protein with tetratricopeptide repeats 4 (IFIT4) is a novel gene whose function is unknown.

Methods

In this study we examined the role played by IFIT4 in monocyte differentiation and the correlation between IFIT4 expression and the clinical manifestation of SLE. To this end, we used plasmid transfection, flow cytometry, mixed leucocyte responses, ELISA, quantitative RT-PCR and Western blotting.

Results

We found that both IFIT4 mRNA and protein expression levels were significantly higher in PBMCs and monocytes from SLE patients than in those from healthy control individuals. IFIT4 expression was positively correlated with antinuclear antibodies, anti-double-stranded DNA, and anti-Sm auto-immune antibodies in SLE. Patients with SLE exhibiting higher expression of IFIT4 had a higher prevalence of leucopenia, thrombocytopenia and C3/C4 decrease. IFIT4 protein was localized exclusively to the cytoplasm, and it was significantly upregulated by IFN-α in normal PBMCs. To determine the role played by IFIT4 in monocyte differentiation, the monocytic cell line THP-1 was transfected with pEGFP-IFIT4 expression plasmid and stimulated with granulocyte-macrophage colony-stimulating factor/IL-4 to generate IFIT4-primed dendritic cell-like cells (DCLCs). IFIT4-primed DCLCs acquired morphological characteristics of dendritic cells more quickly, with greater resemblance to dendritic cells, as compared with DCLCs primed with pEGFP-C1 control plasmid trasfection. Furthermore, they exhibited higher expressions of CD40, CD86, CD80, HLA-DR and CD83, along with lower expression of CD14; increased IL-12 secretion; and an increased ability to stimulate T-cell proliferation. In addition, IFIT4-primed DCLCs enhanced IFN-γ secretion (about 2.4-fold) by T cells compared with controls.

Conclusion

Our findings suggest that IFIT4 might play roles in promoting monocyte differentiation into DCLCs and in directing DCLCs to modulate T-helper-1 cell differentiation; these actions might contribute to the autoimmunity and pathogenesis of SLE.  相似文献   

15.
16.
CD4(+)CD25(+) T regulatory cells (Tregs) play an essential role in maintaining immunologic homeostasis and preventing autoimmunity. Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a loss of tolerance to nuclear components. We hypothesized that altered function of CD4(+)CD25(high) Tregs might play a role in the breakdown of immunologic self-tolerance in patients with SLE. In this study, we report a significant decrease in the suppressive function of CD4(+)CD25(high) Tregs from peripheral blood of patients with active SLE as compared with normal donors and patients with inactive SLE. Notably, CD4(+)CD25(high) Tregs isolated from patients with active SLE expressed reduced levels of FoxP3 mRNA and protein and poorly suppressed the proliferation and cytokine secretion of CD4(+) effector T cells in vitro. In contrast, the expression of FoxP3 mRNA and protein and in vitro suppression of the proliferation of CD4(+) effector T cells by Tregs isolated from inactive SLE patients, was comparable to that of normal individuals. In vitro activation of CD4(+)CD25(high) Tregs from patients with active SLE increased FoxP3 mRNA and protein expression and restored their suppressive function. These data are the first to demonstrate a reversible defect in CD4(+)CD25(high) Treg function in patients with active SLE, and suggest that strategies to enhance the function of these cells might benefit patients with this autoimmune disease.  相似文献   

17.
Wang H  Xu J  Ji X  Yang X  Sun K  Liu X  Shen Y 《Cellular immunology》2005,235(2):117-121
To study the apoptosis of lymphocyte subpopulations in systemic lupus erythematosus (SLE) patients and the possible role of IL-10 in this apoptosis involved in the pathogenesis of SLE, three color fluorescence and flow cytometry were used to investigate the early apoptosis of lymphocyte subsets from freshly separated or cultured peripheral blood mononuclear cells (PBMCs). ELISA was employed to detect the levels of IL-10 in serum and the levels of sFas and sFasL in cultured PBMC supernatants, and the results of sFas and sFasL were confirmed by real-time PCR of Fas and FasL mRNA. The results showed that in cells from SLE patients, the apoptosis of CD3+, CD4+, and CD8+ T cells was distinctly increased, and the percentage of CD4+ cells and the CD4/CD8 ratio was significantly decreased, as compared with normal controls. The apoptosis of T lymphocytes cultured with SLE serum was markedly higher than that of cells cultured with control's serum. Blockade of interleukin-10 (IL-10) activation by an anti-IL-10 antibody reduced the SLE serum induced apoptosis of CD4+ and CD8+ T cells. The levels of sFas and sFasL in the culture supernatant and Fas and FasL mRNA expressions in cultured cells were significantly higher in the SLE serum-cultured groups, but decreased evidently in the presence of the anti-IL-10 antibody. Above findings suggested that SLE cells showed abnormally high apoptosis of T lymphocytes, especially of the CD4+ subpopulation, resulting in a decreased CD4/CD8 ratio. The high percentage of apoptotic T cells in SLE patients may be related to the high levels of IL-10 in SLE serum, as IL-10 may induce the abnormally activated T cells to trigger apoptosis via the Fas-FasL pathway.  相似文献   

18.
19.
20.
The cellular and molecular mechanisms involved in many abnormalities described in Systemic Lupus Erythematosus (SLE) are still unclear. Some of these abnormalities referred to the hyperactivation of T lymphocytes and the enhanced secretion of MMP-9 by peripheral blood mononuclear cells (PBMCs). Therefore, in this paper we investigated the potential role of CD147 molecule in these abnormalities. Our results demonstrated that CD147 molecule is overexpressed on CD3+T lymphocytes from SLE patients when compared with CD3+T lymphocytes from healthy donors. Monoclonal anti-CD147 antibodies, MEM-M6/1 clone, were able to inhibit protein tyrosine phosphorylation only in CD3 x CD28 costimulated T lymphocytes from SLE patients. However, this monoclonal antibody was unable to inhibit the enhanced activity of MMP-9 secreted by SLE PBMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号