首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
3.
A cluster of four receptor-like genes has been previously identified in the Vf locus of the crabapple Malus floribunda clone 821 that confers resistance to five races of the fungal pathogen Venturia inaequalis, the casual agent of apple scab disease. Pairwise comparisons of the four Vf paralogs in both promoter and coding regions reveal their timeline evolutionary history. The four Vf paralogs have evolved from four ancient Vf members resulting from two sequential duplication events of a single Vf progenitor initially present in the Malus genome. The coding sequences of the four Vf paralogs are characterized with high numbers of unique polymorphic nucleotides, a number of short duplications/deletions, various deletions of complete LRR copy units, and a casual insert of a transposon-like element. Significant high ratios of nonsynonymous to synonymous substitutions, Ka/Ks, are observed in the putative ligand binding residues in the LRR domains. No sequence exchange between the four Vf paralogs is observed. Compared with promoter regions, only nucleotide substitutions are dramatically elevated in the coding regions. The results presented in this study strongly indicate that the Vf locus is under strong and steady horizontal selective pressures imposed by the fungal pathogen V. inaequalis, and divergent selection on somatic variations plays a key role in shaping the resistance specificity.  相似文献   

4.
Apple scab, caused by the fungus Venturia inaequalis, is the major production constraint in temperate zones with humid springs. Normally, its control relies on frequent and regular fungicide applications. Because this control strategy has come under increasing criticism, major efforts are being directed toward the breeding of scab-resistant apple cultivars. Modern apple breeding programs include the use of molecular markers, making it possible to combine several different scab-resistance genes in 1 apple cultivar (pyramiding) and to speed up the breeding process. The apple scab-resistance gene Vb is derived from the Siberian crab apple 'Hansen's baccata #2', and is 1 of the 6 "historical" major apple scab-resistance genes (Vf, Va, Vr, Vbj, Vm, and Vb). Molecular markers have been published for all these genes, except Vr. In testcross experiments conducted in the 1960s, it was reported that Vb segregated independently from 3 other major resistance genes, including Vf. Recently, however, Vb and Vf have both been mapped on linkage group 1, a result that contrasts with the findings from former testcross experiments. In this study, simple sequence repeat (SSR) markers were used to identify the precise position of Vb in a cross of 'Golden Delicious' (vbvb) and 'Hansen's baccata #2' (Vbvb). A genome scanning approach, a fast method already used to map apple scab-resistance genes Vr2 and Vm, was used, and the Vb locus was identified on linkage group 12, between the SSR markers Hi02d05 and Hi07f01. This finding confirms the independent segregation of Vb from Vf. With the identification of SSR markers linked to Vb, another major apple scab-resistance gene has become available; breeders can use it to develop durable resistant cultivars with several different resistance genes.  相似文献   

5.
The wild apple (Malus sieversii) is a large-fruited species from Central Asia, which is used as a source of scab resistance in cultivar breeding. Phytopathological tests with races of Venturia inaequalis were performed to differentiate scab-resistance genes in Malus as well as an avirulence gene in the pathogen. A novel gene-for-gene interaction between V. inaequalis and Malus was identified. The locus of the scab-resistance gene Vh8 is linked with, or possibly allelic to, that of the Vh2 gene in Malus pumila Russian apple R12740-7A, at the lower end of linkage group 2 of Malus. Race 8 isolate NZ188B.2 is compatible with Vh8, suggesting the loss or modification of the complementary AvrVh8 gene, while isolate 1639 overcomes both Vh2 and Vh8, but is incompatible with at least one other gene not detected by any of the other race isolates tested. Our research is the first to differentiate scab-resistance genes in a putative gene cluster in apple with the aid of races of V. inaequalis.  相似文献   

6.
Scab, caused by the fungal pathogen Venturia inaequalis, is the most common disease of cultivated apple (Malus xdomestica). The fungal races 6 and 7 have now overcome the major resistance gene Vf, which is widely used in apple breeding programmes. New breeding strategies to achieve durable resistance are thus necessary. The aim of this study was to determine the genetic basis of quantitative resistance of the apple cultivar 'Dülmener Rosenapfel', known to be scab resistant under different environmental conditions. An F1 progeny derived from the cross between the susceptible cultivar 'Gala' and 'Dülmener Rosenapfel' was tested in a greenhouse with a multi-isolate inoculum of V. inaequalis. Rvi14, a new major gene that conditions a chlorotic-type reaction, was mapped on linkage group (LG) 6 in a genomic region not known to be involved in disease resistance. A further three quantitative trait loci (QTL) for resistance were identified. One co-localized with Rvi14 on LG6, whereas the remaining two were detected on LG11 and LG17, in genomic regions already reported to carry broad-spectrum QTL in other genetic backgrounds. Since a selective genotyping approach was used to detect QTL, an expectation-maximization (EM) computation was used to estimate the corrected QTL contributions to phenotypic variation and was validated by entire progeny genotyping.  相似文献   

7.
8.
The fungus Venturia inaequalis infects members of the Maloideae, and causes the disease apple scab, the most important disease of apple worldwide. The early elucidation of the gene-for-gene relationship between V. inaequalis and its host Malus has intrigued plant pathologists ever since, with the identification of 17 resistance (R)-avirulence (Avr) gene pairings. The Avr gene products are presumably a subset of the total effector arsenal of V. inaequalis (predominantly proteins secreted in planta assumed to facilitate infection). The supposition that effectors from V. inaequalis act as suppressors of plant defence is supported by the ability of the pathogen to penetrate the cuticle and differentiate into large pseudoparenchymatous structures, termed stromata, in the subcuticular space, without the initiation of an effective plant defence response. If effectors can be identified that are essential for pathogenicity, the corresponding R genes will be durable and would add significant value to breeding programmes. An R gene cluster in Malus has been cloned, but no V. inaequalis effectors have been characterized at the molecular level. However, the identification of effectors is likely to be facilitated by the resolution of the whole genome sequence of V. inaequalis. TAXONOMY: Teleomorph: Venturia inaequalis Cooke (Wint.); Kingdom Fungi; Phylum Ascomycota; Subphylum Euascomycota; Class Dothideomycetes; Family Venturiaceae; genus Venturia; species inaequalis. Anamorph: Fusicladium pomi (Fr.) Lind or Spilocaea pomi (Fr.). LIFE CYCLE: V. inaequalis is a hemibiotroph and overwinters as pseudothecia (sexual fruiting bodies) following a phase of saprobic growth in fallen leaf tissues. The primary inoculum consists of ascospores, which germinate and penetrate the cuticle. Stromata are formed above the epidermal cells but do not penetrate them. Cell wall-degrading enzymes are only produced late in the infection cycle, raising the as yet unanswered question as to how V. inaequalis gains nutrients from the host. Conidia (secondary inoculum) arise from the upper surface of the stromata, and are produced throughout the growing season, initiating multiple rounds of infection. VENTURIA INAEQUALIS AS A MODEL PATHOGEN OF A WOODY HOST: V. inaequalis can be cultured and is amenable to crossing in vitro, enabling map-based cloning strategies. It can be transformed readily, and functional analyses can be conducted by gene silencing. Expressed sequence tag collections are available to aid in gene identification. These will be complemented by the whole genome sequence, which, in turn, will contribute to the comparative analysis of different races of V. inaequalis and plant pathogens within the Dothideomycetes.  相似文献   

9.
The ascomycete Venturia inaequalis, causal pathogen of apple scab, underlies a gene-for-gene relationship with its host plant apple (Malus spp.). 'Golden Delicious', one of the most common cultivated apples in the world, carries the ephemeral resistance gene Vg. Avirulence gene AvrVg, matching resistance gene Vg has recently been mapped on the V. inaequalis genome. In this paper, we present the construction of a BAC library from a V. inaequalis AvrVg isolate. The library is composed of 7680 clones, with an average insert size of 80kb. By hybridization, it has been estimated that the library contains six haploid genome equivalents. Thus the V. inaequalis genome can be predicted to be approximately 100Mb in size. A chromosome walk, starting from the marker VirQ5 co-segregating with AvrVg, has been performed using the BAC library. Twelve BAC clones were identified during four steps of the chromosome walking. The size of the resulting contig is approximately 330kb.  相似文献   

10.
The apple production in temperate regions with spring rains, the Scab caused by the fungus Venturia inaequalis is the most important constraint. To produce spotless apples and avoid damage that develops during storage, growers apply fungicide on a regular or weather-determined basis. All major apple cultivars are highly susceptible to this disease. To limit the need for fungicide applications, apple breeders are currently introgressing disease resistance from wild Malus accessions into commercial lines. The first attempts to do this were made 100 years ago. As apples are self-incompatible, pseudo-backcrossing is used to eliminate unwanted traits from wild Malus and select new cultivars that are attractive to both producers and consumers. This process, from the first cross of a commercial cultivar with a wild, disease-resistant Malus, is extremely long due to apple’s long juvenile phase, the need for more than seven backcross steps and the high heterozygosity of this genus. Therefore, most of today’s scab-resistant cultivars rely on a single introduction of scab resistance from Malus floribunda 821, referred to as Vf. In this paper, we trace the history of Vf from its initial identification through its use in breeding and commercial production. We sum up the literature describing how and where Vf resistance has been overcome by new pathotypes of V. inaequalis. Finally, we describe the current knowledge of the genes behind Vf resistance, its mode of action and the use of Vf genes in gene technology.  相似文献   

11.
12.
Venturia inaequalis is a hemibiotrophic ascomycete that causes apple scab. Germ tubes, from conidia or ascospores, penetrate the leaf or fruit surface directly via appressoria-like swellings; subsequently the hyphae divide laterally to form a stroma between the cuticle and the outer wall of the epidermal cells. This morphological switch can be mimicked by growing the fungus in vitro on cellophane discs. The aim of this work was to identify genes upregulated in planta using growth on cellophane as a model. Four cDNA clones were found to be induced by growth on cellophane, and qRT-PCR showed two of these genes were up-regulated over a thousand fold in infected apple leaves compared to liquid culture. The predicted proteins for both genes possess putative signal peptides for secretion but have no similarity to sequences in publicly available databases. Both genes encode proteins with novel, imperfect repeat domain structures, the number of which vary in an isolate-specific fashion. Cin1 has seven or eight repeats of about 60 amino acids with four conserved cysteine residues per repeat, while Cin3 has four or five repeats of 32 amino acids with no cysteines. Both proteins appear to have evolved through internal duplication. Cin3, in particular, shows considerable between-strain variation in domain structure, indicating a high degree of recombination at this locus and revealing that the repeat structure has most likely arisen by unequal crossing-over. Results of this study support the hypothesis that cellophane-grown V. inaequalis mimics aspects of biotrophic infection and provide the first insights into novel fungal genes expressed during apple scab infection and their mechanisms of evolution.  相似文献   

13.
新疆苹果黑星病菌野生型菌株对腈菌唑的敏感性基线   总被引:1,自引:0,他引:1  
为建立苹果黑星菌对腈菌唑的敏感性基线,对田间苹果黑星菌的抗药性监测和病害防治提供科学指导,选用从新疆长期未施任何化学农药的废弃果园中采集分离的37个苹果黑星菌野生型菌株,采用分生孢子萌发法和菌丝生长速率法进行不同浓度梯度杀菌剂腈菌唑(myclobutanil)的敏感性测定.结果表明:苹果黑星菌对腈菌唑的敏感性分布范围为...  相似文献   

14.
Apple scab, caused by the fungal pathogen Venturia inaequalis, is one of the most severe diseases of apple worldwide. It is the most studied plant–pathogen interaction involving a woody species using modern genetic, genomic, proteomic and bioinformatic approaches in both species. Although ‘Geneva’ apple was recognized long ago as a potential source of resistance to scab, this resistance has not been characterized previously. Differential interactions between various monoconidial isolates of V. inaequalis and six segregating F1 and F2 populations indicate the presence of at least five loci governing the resistance in ‘Geneva’. The 17 chromosomes of apple were screened using genotyping‐by‐sequencing, as well as single marker mapping, to position loci controlling the V. inaequalis resistance on linkage group 4. Next, we fine mapped a 5‐cM region containing five loci conferring both dominant and recessive scab resistance to the distal end of the linkage group. This region corresponds to 2.2 Mbp (from 20.3 to 22.5 Mbp) on the physical map of ‘Golden Delicious’ containing nine candidate nucleotide‐binding site leucine‐rich repeat (NBS‐LRR) resistance genes. This study increases our understanding of the complex genetic basis of apple scab resistance conferred by ‘Geneva’, as well as the gene‐for‐gene (GfG) relationships between the effector genes in the pathogen and resistance genes in the host.  相似文献   

15.
Cisgenesis represents a step toward a new generation of GM crops. The lack of selectable genes (e.g. antibiotic or herbicide resistance) in the final product and the fact that the inserted gene(s) derive from organisms sexually compatible with the target crop should rise less environmental concerns and increase consumer's acceptance. Here we report the generation of a cisgenic apple plant by inserting the endogenous apple scab resistance gene HcrVf2 under the control of its own regulatory sequences into the scab susceptible apple cultivar Gala. A previously developed method based on Agrobacterium-mediated transformation combined with a positive and negative selection system and a chemically inducible recombination machinery allowed the generation of apple cv. Gala carrying the scab resistance gene HcrVf2 under its native regulatory sequences and no foreign genes. Three cisgenic lines were chosen for detailed investigation and were shown to carry a single T-DNA insertion and express the target gene HcrVf2. This is the first report of the generation of a true cisgenic plant.  相似文献   

16.
Genes encoding pathogenesis-related (PR-) proteins isolated from a cDNA library of Fusarium graminearum-infected wheat spikes of scab-resistant cultivar 'Sumai-3' were transformed into susceptible spring wheat, 'Bobwhite' using a biolistic transformation protocol, with the goal of enhancing levels of resistance against scab. Twenty-four putative transgenic lines expressing either a single PR-protein gene or combinations thereof were regenerated. Transgene expression in a majority of these lines (20) was completely silenced in the T(1) or T(2) generations. Four transgenic wheat lines showed stable inheritance and expression of either a single transgene or transgene combinations up to four generations. One line co-expressing a chitinase and beta-1,3-glucanase gene combination, when bioassayed against scab showed a delay in the spread of the infection (type II resistance) under greenhouse conditions. This line and a second transgenic line expressing a rice thaumatin-like protein gene (tlp) which had moderate resistance to scab in previous greenhouse trials, along with susceptible and resistance checks were evaluated for resistance to scab under field conditions. None of the transgenic lines had resistance to scab in the field under conditions of strong pathogen, suggesting these plants lacked effective resistance to initial infection (type I resistance) under these conditions. As far as is known, this is the first report of field evaluation of transgenic wheat expressing genes for PR-proteins against disease resistance.  相似文献   

17.
A major scab resistance gene called Va1 was identified in the Russian apple cultivar ‘Antonovka’ (accession APF22) conferring scab resistance under conditions of natural scab infection in the field. After scab scorings over a period of 3 years, a 1:1 segregation was observed in the mapping population 04/214 (‘Golden Delicious’ × ‘Antonovka’). The Va1 resistance gene provides sufficient broad spectrum resistance that is of use in apple resistance breeding and has been assigned Rvi17 according the proposal for a new scab nomenclature (Bus et al., Acta Horticulturae 814:739–746, 2009). Analysis of simple sequence repeats (SSRs) located on the apple linkage group (LG) 1 showed that the Va1 locus is closely linked (1 cM) to SSR CH-Vf1 known to cosegregate with the Vf locus. A tight genetic association was also observed between a specific cleaved amplified polymorphic sequence marker (ARD-CAPS) developed from the HcrVf paralog Vf2ARD present in ‘Antonovka’, but there is no indication yet for a causal relationship with Vf2ARD. Although the whole race spectrum of Va1 is still unknown, it was obvious that it acts against the scab races 6 and 7 which are able to overcome the resistance of Malus floribunda 821. A second resistance factor (named Va2) was studied by race 1-specific scab tests based on grafted 04/214 clones. A 1:1-segregation ratio was observed, too, but 18 “phenotypic recombinants” were found after comparisons with the field scab data of the same genotypes. Va2 was mapped on LG 1 with a genetic distance of about 15 cM above CH-Vf1. The positions of the newly identified ‘Antonovka’ scab resistance factors are compared with previously reported Va mapping approaches and published results from quantitative trait loci analyses performed with different ‘Antonovka’ genotypes.  相似文献   

18.
A chromosomal region originating from Malus floribunda 821 confers Vf scab resistance to many isolates of Venturia inaequalis. Twelve DNA markers located in this region were used to scan the equivalent of 31 cM in 98 Malus accessions. This allowed a molecular diagnosis of a source of resistance in apple germplasm with the aid of pedigree information, and in the context of a limited marker survey representing other chromosomes. At least five marker alleles were present in all scab-resistant breeding selections or varieties arising from M. floribunda. The validity of findings based on RAPD markers was confirmed with SCAR assays and Southern-hybridisation experiments. The order of markers determined in previous mapping studies was confirmed and sets of recombinants identified that establish reliable fine-mapping orders within 0.7 cM of the resistance locus. None of the marker alleles were present in the accessions that are either susceptible or possess weak polygenic resistance to scab. The presence of some alleles corresponding to those present at least 5.3 cM from Vf in M. floribunda was detected in some accessions. Other major sources of scab resistance do not appear to possess alleles in common with the Vf region, which will simplify future allelism tests. The results are discussed in the context of the introgression of resistance loci together with marker-assisted selection. The use of breeding pedigrees to assist in fine-scale mapping and map-based cloning is discussed. Received: 16 February 1999 / Accepted: 11 March 1999  相似文献   

19.
Apple scab caused by Venturia inaequalis is the most important fungal disease of apples (Malus × domestica). Currently, the disease is controlled by up to 15 fungicide applications to the crop per year. Resistant apple cultivars will help promote the sustainable control of scab in commercial orchards. The breakdown of the Rvi6 (Vf) major-gene based resistance, the most used resistance gene in apple breeding, prompted the identification and characterization of new scab resistance genes. By using a large segregating population, the Rvi12 scab resistance gene was previously mapped to a genetic location flanked by molecular markers SNP_23.599 and SNP_24.482. Starting from these markers, utilizing chromosome walking of a Hansen’s baccata #2 (HB2) BAC-library; a single BAC clone spanning the Rvi12 interval was identified. Following Pacific Biosciences (PacBio) RS II sequencing and the use of the hierarchical genome assembly process (HGAP) assembly of the BAC clone sequence, the Rvi12 resistance locus was localized to a 62.3-kb genomic region. Gene prediction and in silico characterization identified a single candidate resistance gene. The gene, named here as Rvi12_Cd5, belongs to the LRR receptor-like serine/threonine-protein kinase family. In silico comparison of the resistance allele from HB2 and the susceptible allele from Golden Delicious (GD) identified the presence of an additional intron in the HB2 allele. Conserved domain analysis identified the presence of four additional LRR motifs in the susceptible allele compared to the resistance allele. The constitutive expression of Rvi12_Cd5 in HB2, together with its structural similarity to known resistance genes, makes it the most likely candidate for Rvi12 scab resistance in apple.  相似文献   

20.
A maturation index summarising pseudothecial development of Venturia inaequalis was devised. The index demonstrated differences in overwintering on 10 apple cultivars and the crab apple Malus toringo in experiments over two winters. At about the green cluster stage, when there is a high proportion of susceptible foliage, there were 50–100 fold differences in the yield of ascospores from these hosts, due mainly to different rates of pseudothecial maturation. These rates were shown to be independent of cultivar differences in colony numbers on leaves in the previous autumn.
Cultivar differences in the timing of fruit bud development were independent of differences in the overwintering of V. inaequalis . These findings confirm the importance of considering cultivar identity in apple scab management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号