首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated the possible role of hydrogen peroxide(H2O2) in the acclimation of a Mediterranean shrub, Cistus albidusL., to summer drought growing under Mediterranean field conditions.For this purpose, changes in H2O2 concentrations and localizationthroughout a year were analysed. H2O2 changes in response toenvironmental conditions in parallel with changes in abscisicacid (ABA) and oxidative stress markers, together with ligninaccumulation, xylem and sclerenchyma differentiation, and leafarea were also investigated. During the summer drought, leafH2O2 concentrations increased 11-fold, reaching values of 10µmol g–1 dry weight (DW). This increase occurredmainly in mesophyll cell walls, xylem vessels, and sclerenchymacells in the differentiation stage. An increase in ABA levelspreceded that of H2O2, but both peaked at the same time in conditionsof prolonged stress. C. albidus plants tolerated high concentrationsof H2O2 because of its localization in the apoplast of mesophyllcells, xylem vessels, and in differentiating sclerenchyma cells.The increase in ABA, and consequently of H2O2, in plants subjectedto drought stress might induce a 3.5-fold increase in ascorbicacid (AA), which maintained and even decreased its oxidativestatus, thus protecting plants from oxidative damage. Afterrecovery from drought following late-summer and autumn rainfall,a decrease in ABA, H2O2, and AA to their basal levels (60 pmolg–1 DW, 1 µmol g–1 DW, and 20 µmol g–1DW) was observed. Key words: Abscisic acid, ascorbate, ascorbate oxidative status, Cistus albidus, hydrogen peroxide, leaf plasticity, lignin, Mediterranean shrubs, oxidative markers, summer drought Received 29 July 2008; Revised 15 September 2008 Accepted 8 October 2008  相似文献   

2.
Zinnia elegans stems with 3,3′, 5, 5′-tetramethylbenzidine (TMB) in the presence and in the absence of catalase reveals the presence of xylem oxidase activities in the H2O2-producing lignifying xylem cells. This staining of lignifying xylem cells with TMB is the result of two independent mechanisms: one is the catalase-sensitive (H2O2-dependent) peroxidase-mediated oxidation of TMB, and the other the catalase-insensitive (H2O2-independent) oxidation of TMB, probably due to the oxidase activity of xylem peroxidases. The response of this TMB-oxidase activity of xylem peroxidases to different exogenous H2O2 concentrations was studied, and the results showed that H2O2 at high concentrations (100–1,000 mM) clearly acted as an inactivator of this xylem TMB-oxidase activity, although some inhibitory effect could still be appreciated at 10 mM H2O2. This xylem TMB-oxidase activity resided in a strongly basic cell wall-bound peroxidase (pl about 10.5). Given such a scenario, it may be concluded that this TMB-oxidase activity of peroxidase is located in tissues capable of sustaining H2O2 production, and that the in situ oxidase activity shown by this enzyme is inactivated by high H2O2 concentrations. Received 20 April 1999/ Accepted in revised form 16 August 1999  相似文献   

3.
A. Ros Barceló 《Planta》1998,207(2):207-216
The nature of the enzymatic system responsible for the generation of H2O2 in the lignifying xylem of Zinnia elegans (L.) was studied using the starch/KI method for monitoring H2O2 production and the nitroblue tetrazolium method for monitoring superoxide production. The results showed that lignifying xylem tissues are able to accumulate H2O2 and to sustain H2O2 production. Hydrogen peroxide production in the xylem of Z. elegans was sensitive to pyridine, imidazole, quinacrine and diphenylene iodonium, which are inhibitors of phagocytic plasma-membrane NADPH oxidase. The sensitivity of H2O2 production to the inhibitor of phospholipase C, neomycin, and to the inhibitor of protein kinase, staurosporine, and its reversion by the inhibitor of protein phosphatases, cantharidin, pointed to the analogies existing between the mechanism of H2O2 production in lignifying xylem and the oxidative burst observed during the hypersensitive plant cell response. A further support for the participation of an NADPH-oxidase-like activity in H2O2 production in lignifying xylem was obtained from the observation that areas of H2O2 production were superimposed on areas producing superoxide anion, the suspected product of NADPH oxidase, although attempts to demonstrate the existence of superoxide dismutase activity in intercellular washing fluid from Z. elegans were unsuccessful. Even so, the levels of NADPH-oxidase-like activity in microsomal fractions, and of peroxidase in intercellular washing fluids, are consistent with a role for NADPH oxidase in the delivery of H2O2 which may be further used by xylem peroxidases for the synthesis of lignins. This hypothesis was further confirmed through a direct histochemical probe based on the H2O2-dependent oxidation of tetramethylbenzidine by xylem cell wall peroxidases. These results are the first evidence for the existence of an NADPH oxidase responsible for supplying H2O2 to peroxidase in the lignifying xylem of Z. elegans. Received: 6 February 1998 / Accepted: 14 August 1998  相似文献   

4.
Blooms of the toxic red tide phytoplankton Heterosigma akashiwo(Raphidophyceae) are responsible for substantial losses withinthe aquaculture industry. The toxicological mechanisms of H.akashiwoblooms are complex and to date, heavily debated. One putativetype of ichthyotoxin includes the production of reactive oxygenspecies (ROS) that could alter gill structure and function,resulting in asphyxiation. In this study, we investigated thepotential of H.akashiwo to produce extracellular hydrogen peroxide,and have investigated which cellular processes are responsiblefor this production. Within all experiments, H.akashiwo producedsubstantial amounts of hydrogen peroxide (up to 7.6 pmol min–1104 cells–1), resulting in extracellular concentrationsof ~0.5 µmol l–1 H2O2. Measured rates of hydrogenperoxide production were directly proportional to cell density,but at higher cell densities, accuracy of H2O2 detection wasreduced. Whereas light intensity did not alter H2O2 production,rates of production were stimulated when temperature was elevated.Hydrogen peroxide production was not only dependent on growthphase, but also was regulated by the availability of iron inthe medium. Reduction of total iron to 1 nmol l–1 enhancedthe production of H2O2 relative to iron replete conditions (10µmol l–1 iron). From this, we collectively concludethat production of extracellular H2O2 by H.akashiwo occurs througha metabolic pathway that is not directly linked to photosynthesis.  相似文献   

5.
The hydroxyl radical produced in the apoplast has been demonstratedto facilitate cell wall loosening during cell elongation. Cellwall-bound peroxidases (PODs) have been implicated in hydroxylradical formation. For this mechanism, the apoplast or cellwalls should contain the electron donors for (i) H2O2 formationfrom dioxygen; and (ii) the POD-catalyzed reduction of H2O2to the hydroxyl radical. The aim of the work was to identifythe electron donors in these reactions. In this report, hydroxylradical (·OH) generation in the cell wall isolated frompea roots was detected in the absence of any exogenous reductants,suggesting that the plant cell wall possesses the capacity togenerate ·OH in situ. Distinct POD and Mn-superoxidedismutase (Mn-SOD) isoforms different from other cellular isoformswere shown by native gel electropho-resis to be preferably boundto the cell walls. Electron paramagnetic resonance (EPR) spectroscopyof cell wall isolates containing the spin-trapping reagent,5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO),was used for detection of and differentiation between ·OHand the superoxide radical (O2·). The data obtainedusing POD inhibitors confirmed that tightly bound cell wallPODs are involved in DEPMPO/OH adduct formation. A decreasein DEPMPO/OH adduct formation in the presence of H2O2 scavengersdemonstrated that this hydroxyl radical was derived from H2O2.During the generation of ·OH, the concentration of quinhydronestructures (as detected by EPR spectroscopy) increased, suggestingthat the H2O2 required for the formation of ·OH in isolatedcell walls is produced during the reduction of O2 by hydroxycinnamicacids. Cell wall isolates in which the proteins have been denaturated(including the endogenous POD and SOD) did not produce ·OH.Addition of exogenous H2O2 again induced the production of ·OH,and these were shown to originate from the Fenton reaction withtightly bound metal ions. However, the appearance of the DEPMPO/OOHadduct could also be observed, due to the production of O2·when endogenous SOD has been inactivated. Also, O2·was converted to ·OH in an in vitro horseradish peroxidase(HRP)/H2O2 system to which exogenous SOD has been added. Takentogether with the discovery of the cell wall-bound Mn-SOD isoform,these results support the role of such a cell wall-bound SODin the formation of ·OH jointly with the cell wall-boundPOD. According to the above findings, it seems that the hydroxycinnamicacids from the cell wall, acting as reductants, contribute tothe formation of H2O2 in the presence of O2 in an autocatalyticmanner, and that POD and Mn-SOD coupled together generate ·OHfrom such H2O2.  相似文献   

6.
Raphidophycean flagellates, Chattonella marina and C. ovata,are harmful red tide phytoplankters; blooms of these phytoplanktersoften cause severe damage to fish farming. Previous studieshave demonstrated that C. marina and C. ovata continuously producereactive oxygen species (ROS) such as superoxide anion (O2)hydrogen peroxide (H2O2) under normal growth conditions, andan ROS-mediated toxic mechanism against fish and other marineorganisms has been proposed. Although the exact mechanism ofROS generation in these phytoplankters still remains to be clarified,our previous study suggested that NADPH oxidase-like enzymelocated on the cell surface of C. marina may be involved inO2 generation. To investigate the localization of O2and H2O2 generation in C. marina and C. ovata, we employed 2-methyl-6(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin-3-oneand 5-(and-6)-carboxy-2',7'-dichlorodihydrodihydrofluoresceindictate, acetyl ester, which are specific fluorescent probefor detecting O2 and H2O2, respectively. Observationby fluorescence microscopy of live phytoplankters incubatedwith each probe revealed that O2 is mainly generatedon the cell surface, whereas H2O2 is generated in the intracellularcompartment in these phytoplankters. When the cells were rupturedby ultrasonic treatment, O2 levels of C. marina and C.ovata decreased significantly, whereas a few times higher levelsof H2O2 were detected in the ruptured cell suspensions whencompared with the levels of the live cell suspension. In immunoblottinganalysis, the protein recognized by anti-human gp91 phox wasdetected in both species. These results suggest that, in bothphytoplankters, the underlying mechanisms of O2 and H2O2generation may be distinct and such systems are independentlyoperating in the cells.  相似文献   

7.
  1. Chlorella cells and spinach chioroplasts, whose catalase activityhad been more than 90% inhibited by 10–5 M azide, werefound to decompose H2O2 photochemically to liberate oxygen,indicating that H2O2 was used as an oxidant of the HILL reaction.
  2. That, however, the observed phenomena cannot be fully accountedfor in terms of the HILL reaction with H2O2 was revealed bythe observation that an extract of Chiorella cells, which hadbeen completely freed from chlorophyll, also showed a light-acceleratedO2 evolution from H2O2 in the presence of 105 M azide.This extract contained a large quantity of catalase, which seemedto have been, in some way, involved in the reaction in question.
  3. The catalatic H2O2 decomposition caused by crystalline catalaseof mammalian liver (in the presence of 10–5 M azide) wasnot accelerated by the effect of light.
1 Present address: Department of Biology, Faculty of Science,Niigata University, Niigata. (Received June 4, 1961; )  相似文献   

8.
Ros Barceló A 《Planta》2005,220(5):747-756
Lignification in Zinnia elegans L. stems is characterized by a burst in the production of H2O2, the apparent fate of which is to be used by xylem peroxidases for the polymerization of p-hydroxycinnamyl alcohols into lignins. A search for the sites of H2O2 production in the differentiating xylem of Z. elegans stems by the simultaneous use of optical (bright field, polarized light and epi-polarization) and electron-microscope tools revealed that H2O2 is produced on the outer-face of the plasma membrane of both differentiating (living) thin-walled xylem cells and particular (non-lignifying) xylem parenchyma cells. From the production sites it diffuses to the differentiating (secondary cell wall-forming) and differentiated lignifying xylem vessels. H2O2 diffusion occurs mainly through the continuous cell wall space. Both the experimental data and the theoretical calculations suggest that H2O2 diffusion from the sites of production might not limit the rate of xylem cell wall lignification. It can be concluded that H2O2 is produced at the plasma membrane in differentiating (living) thin-walled xylem cells and xylem parenchyma cells associated to xylem vessels, and that it diffuses to adjacent secondary lignifying xylem vessels. The results strongly indicate that non-lignifying xylem parenchyma cells are the source of the H2O2 necessary for the polymerization of cinnamyl alcohols in the secondary cell wall of lignifying xylem vessels.  相似文献   

9.
Cytochemical Localization of Hydrogen Peroxide in Lignifying Cell Walls   总被引:5,自引:0,他引:5  
The presence of endogenous H2O2 was demonstrated at the electronmicroscope level with the CeCl3 technique in lignifying cellwalls of poplar. Reaction product was precisely located in thevery same walls which could oxidize hydrogen donors in the absenceof exogeneous H2O2. As evidenced by these results, peroxidasesare truly involved in the polymerisation of lignin monomerseven if other oxidases may participate in this biosyntheticpathway.Copyright 1993, 1999 Academic Press Cytochemistry, hydrogen peroxide, lignification, peroxidase, polyphenoloxidase, Populus x euramericana, poplar  相似文献   

10.
Cucumber (Cucumis sativus L.) seedlings were grafted onto cucumber-(CG) or figleaf gourd- (FG, Cucurbita ficifolia Bouché)seedlings in order to determine the effect of solution temperature(12, 22, and 32°C) on the mineral composition of xylem sapand the plasma membrane K+-Mg++-ATPase activities of the roots.Low solution temperature (12°C) lowered the concentrationof NO3 and H2PO4 in xylem sap of CG plants butnot of FG plants. Concentrations of K+, Ca++ and Mg++ in xylemsap were less affected than anions by solution temperature.The plasma membrane of FG plants grown in 12°C solutiontemperature showed the highest K+- Mg++-ATPase activity at allATP concentrations up to 3 mM and at low reaction temperatureup to 12°C, indicating resistance of figleaf gourd to lowroot temperature. (Received December 27, 1994; Accepted March 10, 1995)  相似文献   

11.
Cyclopenin (C17H14O3N2) and cyclopenol (C17H14O4N2), isolatedfrom an abberent strain of Penicillium cyclopium (NRRL 6233),significantly inhibited the growth of etiolated wheat (Triticumaestivum) coleoptile segments. The former inhibited at 10–3and 10–4 M, the latter at 10–3 M. Cyclopenin producedmalformation of the first set of trifoliate leaves in bean (Phaseolusvulgaris) at 10–2 M and necrosis and stunting in corn(Zea mays) at 10–2 M. Cyclopenol induced no apparent effectsin bean or corn plants. Neither compound changed the growthor morphology of tobacco (Nicotiana tabacum) plants. Cyclopenininduced intoxication, prostration and ataxia in day-old chicksat 500 mg/kg, but they recovered within 18 hours. Cyclopenolwas inactive against chicks when dosed at levels up to 500 mg/kg. (Received October 11, 1983; Accepted December 15, 1983)  相似文献   

12.
The mechanism underlying H2O2-inducedactivation of frog skeletal muscle ryanodine receptors was studiedusing skinned fibers and by measuring single Ca2+-releasechannel current. Exposure of skinned fibers to 3-10 mM H2O2 elicited spontaneous contractures.H2O2 at 1 mM potentiated caffeine contracture.When the Ca2+-release channels were incorporated into lipidbilayers, open probability (Po) and open timeconstants were increased on intraluminal addition ofH2O2 in the presence of cis catalase,but unitary conductance and reversal potential were not affected.Exposure to cis H2O2 at 1.5 mM failedto activate the channel in the presence of trans catalase.Application of 1.5 mM H2O2 to the transside of a channel that had been oxidized by cisp-chloromercuriphenylsulfonic acid (pCMPS; 50 µM) still led to anincrease in Po, comparable to that elicited bytrans 1.5 mM H2O2 without pCMPS.Addition of cis pCMPS to channels that had been treated with orwithout trans H2O2 rapidly resulted inhigh Po followed by closure of the channel. Theseresults suggest that oxidation of luminal sulfhydryls in theCa2+-release channel may contribute toH2O2-induced channel activation and musclecontracture.

  相似文献   

13.
Cell wall activities which are related to the final stages oflignin biosynthesis, that is the generation of hydrogen peroxideand peroxidase activity, were investigated using biochemicaland histochemical methods. Peroxidases involved in both reactionsappeared to be restricted to lignifying tissues. Isolated cellwalls exhibited a very high affinity for syringaldazine. Cellwalls were able, in vitro as well as in vivo, to oxidize guaiacolin the absence of H2O2 when NADH was present in the incubationmedium together with p-coumarate and MnCl2 as cofactors. Theorigin of the NADH used to form H2O2 is discussed. Key words: Lignin biosynthesis, Oxidative polymerization, Peroxidases  相似文献   

14.
Nodulated 1-1.5-year-old plants of Acacia littorea grown inminus nitrogen culture were each partnered with a single seedlingof the root hemiparasite Olax phyllanthi. Partitioning of fixedN between plant organs of the host and parasite was studiedfor the period 4–8 months after introducing the parasite.N fluxes through nodules of Acacia and xylem-tapping haustoriaof Olax were compared using measured xylem flows of fixed Nand anatomical information for the two organs. N2 fixation duringthe study interval (635 µg N g FW nodules–1 d–1)corresponded to a xylem loading flux of 0.20 µg N mm–2d–1 across the secretory membranes of the pencycle parenchymaof the nodule vascular strands. A much higher flux of N (4891µg mm–2 d–1) exited through xylem at the junctionof nodule and root. The corresponding flux of N from host xylemacross absorptive membranes of the endophyte parenchyma of Olaxhaustorium was 1.15 µg N mm–1 d–1, six timesthe loading flux in nodules. The exit flux from haustorium toparasite rootlet was 20.0 pg N mm–1 d–1, 200-foldless than that passing through xylem elements of the nodule.Fluxes of individual amino compounds in xylem of nodule andhaustorium were assessed on a molar and N basis. N flux valuesare related to data for transpiration and partitioning of Cand N of the association recorded in a companion paper. Key words: Olax phyllanthi, host-parasite relationships, N flux, Acacia, N2 fixation  相似文献   

15.
Isolated rat heart perfused with 1.5-7.5µM NO solutions or bradykinin, which activates endothelial NOsynthase, showed a dose-dependent decrease in myocardial O2uptake from 3.2 ± 0.3 to 1.6 ± 0.1 (7.5 µM NO, n = 18,P < 0.05) and to 1.2 ± 0.1 µM O2 · min1 · gtissue1 (10 µM bradykinin, n = 10,P < 0.05). Perfused NO concentrations correlated with aninduced release of hydrogen peroxide (H2O2) inthe effluent (r = 0.99, P < 0.01). NO markedlydecreased the O2 uptake of isolated rat heart mitochondria(50% inhibition at 0.4 µM NO, r = 0.99,P < 0.001). Cytochrome spectra in NO-treated submitochondrial particles showed a double inhibition of electron transfer at cytochrome oxidase and between cytochrome b andcytochrome c, which accounts for the effects in O2uptake and H2O2 release. Most NO was bound tomyoglobin; this fact is consistent with NO steady-state concentrationsof 0.1-0.3 µM, which affect mitochondria. In the intact heart,finely adjusted NO concentrations regulate mitochondrial O2uptake and superoxide anion production (reflected byH2O2), which in turn contributes to thephysiological clearance of NO through peroxynitrite formation.

  相似文献   

16.
Fry, S. C. 1987. Formation of isodityrosine by peroxidase isozymes.—J.exp. Bot. 38: 853–862. Tyrosine residues of extensin are oxidatively coupled in vivoto form isodityrosine bridges, whereas treatment of purifiedextensin with H2O2+ peroxidase in vitro yields only dityrosine.Two explanations for the correct mode of coupling in vivo weretested. The first, that the pH of the cell wall is lower thanthat (pH 9-0) at which in vitro experiments have been conducted,provided part of the answer since treatment of L-tyrosine withH2O2+peroxidase in vitro at pH 37–5 yielded some isodityrosine.The second, that the wall contains other isozymes of peroxidasethan the basic isozyme usually studied in vitro, appeared unlikelybecause several sharply contrasting isozymes yielded similarisodityrosine: dityrosine ratios from L-tyrosine+ H2O2 at anygiven pH. The isozymes were also similar in their ability tooxidize tyrosine-dimers further to higher polymers. It is concludedthat the formation of isodityrosine in vivo is dictated by neighbouringwall molecules, possibly ionically-bound pectins, which modifythe local environment of the tyrosine residues of extensin. Key words: Isodityrosine, peroxidase isozymes, extensin  相似文献   

17.
We examined theeffect of low concentrations of H2O2 on theCa2+-release channel/ryanodine receptor (RyR) to determineif H2O2 plays a physiological role in skeletalmuscle function. Sarcoplasmic reticulum vesicles from frog skeletalmuscle and type 1 RyRs (RyR1) purified from rabbit skeletal muscle wereincorporated into lipid bilayers. Channel activity of the frog RyR wasnot affected by application of 4.4 mM (0.02%) ethanol. Openprobability (Po) of such ethanol-treated RyRchannels was markedly increased on subsequent addition of 10 µMH2O2. Increase of H2O2to 100 µM caused a further increase in channel activity. Applicationof 4.4 mM ethanol to 10 µM H2O2-treated RyRsactivated channel activity. Exposure to 10 or 100 µMH2O2 alone, however, failed to increasePo. Synergistic action of ethanol andH2O2 was also observed on the purified RyR1 channel, which was free from FK506 binding protein (FKBP12).H2O2 at 100-500 µM had no effect onpurified channel activity. Application of FKBP12 to the purified RyR1drastically decreased channel activity but did not alter the effects ofethanol and H2O2. These results suggest thatH2O2 may play a pathophysiological, butprobably not a physiological, role by directly acting on skeletalmuscle RyRs in the presence of ethanol.

  相似文献   

18.
Vital staining with pH indicator dyes made it possible to identifythe xylem with the specific channel A, reported previously,through which hydrogen ions flow generating a resting potentialdifference along the germ axis as their diffusion potential.The distribution of K+ concentration within this channel showedno similarity to electric potential distribution, in contrastto the distribution of H+. The axial P.D. between both ends of a segment cut from a hypocotylresponded reversibly to the change in O2 tension of the surroundinggas phase. After air had been quickly replaced by N2, a lagperiod appeared before the sudden potential drop took place.The lag period () was largely dependent on temperature. Apparentactivation energy of the process characterized by 1/ was 18Kcal/mole between 14–30?C, approximately equal to thatof the O2-uptake within the same temperature range. The relationbetween O2 concentration and the maximum rate of recovery ofP.D. from anoxia was of the Michaelis-Menten type; the apparentKm was calculated as 2.1 ? 10–5M O2 being of the sameorder as that of cytochrome oxidase in higher plants. The O2-uptakerate "per unit of hypocotyl length" showed a distinct maximumin the elongating region where the axial distribution of bothelectric potential and pH within channel A had their minimums. (Received July 21, 1972; )  相似文献   

19.
Ten-day old kidney bean plants (Phaseolus vulgaris L. cv. Shin-edogawa)were exposed to 2.0 and 4–0 parts 10–6 NO2, and0.1, 0.2, and 0.4 parts 10–6 O3 alone or in combinationfor 2, 4, and 7 d. The effects of these air pollutants wereexamined with respect to the growth, partitioning of assimilates,nitrogen uptake, soluble sugar content, and root respiration. Decreased dry matter production was significant with all treatmentsexcept 2.0 parts 10–6 NO2 and 0.1 parts 10–6 O3.Exposure to mixtures of the gases produced more severe suppressionof growth than exposure to the single gases. Root/shoot ratiowas significantly lowered at 7 d by the gas treatments otherthan 2.0 parts 10–6 NO2 and 0.1 parts 10–6 O3. Thetotal nitrogen content of plants was increased by all treatments;the higher percent of nitrogen found with O3 exposure will resultfrom the growth retardation which increases the concentrationof nitrogen in the plants because the absorption of nitrogenby roots was unaffected. The combination of O3 with NO2 significantlydecreased the assimilation of NO2 by the plants. The concentration of soluble sugars in roots was decreased bythe gas treatments. There was a strong positive correlationbetween soluble sugar content and dry weight of the roots harvestedat 7 d. Root respiration was relatively unchanged until 5 dand then decreased significantly at 7 d by 2.0 parts 10–6NO2 and 0–2 parts 10–6 O3. Retarded growth of theroots and the decreased root respiration may be due to diminishedtranslocation of sugars from leaves to roots caused by exposureto air pollutants. The uptake of soil nitrogen was not closelyrelated with root respiration in the case of O3 exposure. Key words: NO2, O3, Phaseolus vulgaris, Growth, Sugars, Root respiration  相似文献   

20.
H2O2 is an essential signal in absicic acid (ABA)-induced stomatalclosure. It can be synthesized by several enzymes in plants.In this study, the roles of copper amine oxidase (CuAO) in H2O2production and stomatal closure were investigated. ExogenousABA stimulated apoplast CuAO activity, increased H2O2 productionand [Ca2+]cyt levels in Vicia faba guard cells, and inducedstomatal closure. These processes were impaired by CuAO inhibitor(s).In the metabolized products of CuAO, only H2O2 could inducestomatal closure. By the analysis of enzyme kinetics and polyaminecontents in leaves, putrescine was regarded as a substrate ofCuAO. Putrescine showed similar effects with ABA on the regulationof H2O2 production, [Ca2+]cyt levels, as well as stomatal closure.The results suggest that CuAO in V. faba guard cells is an essentialenzymatic source for H2O2 production in ABA-induced stomatalclosure via the degradation of putrescine. Calcium messengeris an important intermediate in this process. Key words: Abscisic acid, calcium, copper amine oxidase, hydrogen peroxide, putrescine, stomatal closure, Vicia faba Received 13 October 2007; Revised 16 December 2007 Accepted 20 December 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号