首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test the hypothesis that reduced oxygen tension stimulates cardiac atrial natriuretic peptide (ANP) secretion, we measured ANP release and expression in neonatal rat atrial and ventricular cardiac myocytes exposed to 45 min and 3, 6, and 24 hr of 3% or 21% oxygen. In atrial cardiocytes, the percentage of increase in culture media ANP concentration from baseline was greater in cells exposed to 3% than in cells exposed to 21% oxygen after 3 hr (814% +/- 52% vs. 567% +/- 33%, P < 0.05) and 6 hr of exposure (1639% +/- 91% vs. 1155% +/- 73%, P < 0.05). No differences in the percentage of increase in culture media ANP concentration was seen at 45 min (284% +/- 27% vs. 201% +/- 16%, P = NS) or 24 hr (2499% +/- 250% vs. 2426% +/- 195%). There was a significant increase in cellular ANP content between 3 and 24 hr in atrial cardiocytes exposed to 21% oxygen (105% +/- 40% vs. 296% +/- 60%, P < 0.05), but not in atrial cardiocytes exposed to 3% oxygen (118% +/- 20% vs. 180% +/- 26%, P = NS). Steady-state ANP mRNA levels in atrial cardiocytes were not affected by oxygen tension. In ventricular cardiocytes, oxygen tension did not affect ANP secretion, cellular ANP content, or steady-state ANP mRNA levels. We conclude that reduced oxygen tension increases release of ANP from atrial, but not ventricular cardiocytes and that this mechanism may contribute to the elevation in plasma ANP seen during acute hypoxia.  相似文献   

2.
Pro-natriodilatin (PND) is the precursor for atrial natriuretic peptide (ANP), a hormone which plays an important role in cardiovascular homeostasis. Since the effects of thyroid hormone (T3) on the cardiovascular and renal systems appear to mimic those elicited by ANP, we studied the effect of T3 on PND gene expression using rat neonatal cardiocytes in primary cultures. Treatment of cardiocytes for 48 h with T3 (5 X 10(-9) M) results in a maximal increase in PND mRNA levels; this increase is two fold in atrial and four fold in ventricular cell cultures. These results taken together with a previous report showing decreased plasma ANP in hypothyroid and increased plasma ANP in hyperthyroid rats suggest that at least some of the cardiovascular and renal effects of T3 may be mediated by a T3-dependent increase in PND gene expression.  相似文献   

3.
Summary Immunohistochemical examination of atrial natriuretic peptide (ANP) was performed on endomyocardial biopsy specimens from 8 patients with dilated cardiomyopathy (DCM), 10 human foetal hearts obtained from legal abortions, and 8 adult hearts from autopsy control subjects without cardiovascular diseases. The indirect immunoperoxidase method, using specific monoclonal antibody to -human ANP was employed. Immunoreactivity was observed at the light microscope level in the working ventricular cardiocytes of all patients with DCM as dark-brown, granular deposits. Peripheral plasma levels of ANP in these patients were also increased. In control adult hearts without cardiovascular diseases, immunoreactivity was detected both in the atria and in the ventricular impulse-conducting system, although the working ventricular cardiocytes were not immunoreactive. In foetal hearts, immunoreactivity was detected not only in the atria and ventricular impulse-conducting system, but also in the working ventricular cardiocytes. We conclude that ANP is present in the ventricular impulse-conducting system of the human hearts, and that ANP is also present in the working ventricular cardiocytes in patients with DCM as well as in human foetuses.  相似文献   

4.
Specific granules in porcine hearts were observed in atrial cardiocytes, Purkinje fibers, and transitional cells of the ventricle. These granule-containing cells were immunohistochemically stained by applying the avidin-biotin-peroxidase complex method using an antiserum against alpha-human atrial natriuretic polypeptide (ANP). Immunoelectron microscopy of sections stained using the immunogold method indicated that these specific granules are storage sites of ANP. Furthermore, an impulse-conducting system consisting of immunoreactive cells was clearly distinguishable from nonimmunoreactive ventricular cardiocytes. We conclude that specific-granule-containing cells, i.e., ANP-producing cells, are located in both the atrial walls and the ventricular impulse-conducting system. The presence of ANP may be correlated with impulse conduction.  相似文献   

5.
6.
Atrial natriuretic peptide (ANP) is synthesized and stored in the atria of the heart, but not or at very low concentrations in the ventricles. We investigated the occurrence of ANP and its messenger RNA (mRNA) in human ventricular aneurysm where the cardiocytes were physically over-stretched. The techniques of light and electron microscopic immunocytochemistry, and RNA-RNA tissue in situ hybridization were employed. A large amount of ANP immunoreactivity was found in the cytoplasm of the cardiocytes in and around the aneurysm, but not in fibrous scar tissue or in the normal ventricles. Immunoelectron microscopy localized the immunoreactivity mainly to specific secretory granules in the cytoplasm of the cardiocytes. ANP mRNA was also detected in these cardiocytes. The abundance of both was much higher than that found in the hypertrophic ventricles of other types. The highest concentration of ANP immunoreactivity and of ANP mRNA was found in the cardiocytes located at the border zone. The quantities of both ANP and its mRNA decreased in cardiocytes more distant from the lesion. Our findings suggest that human ventricular cardiocytes in and around aneurysm can convert to produce large amounts of the endocrine peptide ANP. This ventricular endocrine conversion was localized and was probably caused by physical over-stretch of the cardiocytes.  相似文献   

7.
The atrial and ventricular cardiocytes of the house musk shrew were examined by immunohistochemistry, and the right atrium containing the auricle was studied by transmission electron microscopy. The atrial natriuretic peptide (ANP)-granules of the cardiocytes in the auricle and the rest of the atrium were also analyzed by ultrastructural morphometry. On immunohistochemistry, ANP immunoreactivity was detected in the atria, with the most intensely reacting cardiocytes being localized in the right auricular part of the atrium. ANP immunoreactivity was not detected in the ventricular muscles. On ultrastructure, in most of the atrial cardiocytes including the auricle, ANP-granules, well-developed Golgi apparatus and rough endoplasmic reticulum were observed, and the nuclei were characteristically situated in the periphery of the cardiocytes, being different from many other mammalian hearts. The ANP-granules were classified into two types (A and B), with most of these granules being located in the paranuclear region in association with the Golgi apparatus, and a few ANP granules being observed throughout the sarcoplasmic layers intervening between the myofibrilar bundles. On ultrastructural morphometry, the total number of granules in the right auricular cardiocytes was significantly greater than those in the atrial cardiocytes, and the diameter of the A-granules was significantly greater than that of the B-granules in both the atrial and auricular cardiocytes.  相似文献   

8.
Antibodies produced in the mouse by repeated intraperitoneal injections of partly purified atrial natriuretic factor (low molecular weight peptide (LMWP) and high molecular weight peptide (HMWP)) have been used to localize these factors by immunohistochemistry (immunofluorescence and immunoperoxidase method) and by immunocytochemistry (protein A-gold technique) in the heart of rats and of a variety of animal species including man and in the rat salivary glands. Immunofluorescence and the immunoperoxidase method gave identical results; in the rat, atrial cardiocytes gave a positive reaction at both nuclear poles while ventricular cardiocytes were consistently negative. The cardiocytes of the right atrial appendage were more intensely reactive than those localized in the left appendage. A decreasing gradient of intensity was observed from the subpericardial to the subendocardial cardiocytes. The cardiocytes of the interatrial septum were only lightly granulated. Sodium deficiency and thirst (deprivation of drinking water for 5 days) produced, as already shown at the ultrastructural level, a marked increase in the reactivity of all cardiocytes from both atria with the same gradient of intensity as in control animals. Cross-reactivity of intragranular peptides with the rat antibodies allowed visualization of specific granules in a variety of animal species (mouse, guinea pig, rabbit, rat, dog) and in human atrial appendages. No reaction could be elicited in the frog atrium and ventricle although, in this species, specific granules have been shown to be present by electron microscopy in all cardiac chambers. With the protein A-gold technique, at the ultrastructural level, single labeling (use of one antibody on one face of a fine section) or double labeling (use of two antibodies on the two faces of a fine section) showed that the two peptides are localized simultaneously in all three types (A, B and D) of specific granules. In the rat salivary glands, immunofluorescence and the immunoperoxidase method showed reactivity exclusively in the acinar cells. The reaction was most intense in the acinar cells of the parotid gland. In the sublingual gland, only the serous cells, sometimes forming abortive "demi-lunes", were reactive. In the submaxillary gland, the reaction was weaker and distributed seemingly haphazardly in the gland. The most constantly reactive cells were localized near the capsule while many cells did not contain visible reaction product.  相似文献   

9.
Mouse, rat and Mongolian gerbil atrial and ventricular cardiocytes were examined by immunohistochemistry, and the right atrium including the auricle was examined by transmission electron microscopy. In addition the ANP granules of both right atrial and auricular cardiocytes were analyzed by ultrastructural morphometry. ANP immunoreactivity was detected in the atria of all three species, and the most intensely reacting cardiocytes were localized in the right auricular part of the atrium. These reactions were more prominent in the mouse and rat than in the Mongolian gerbil. ANP immunoreactivity was not detected in the ventricular myocardium of any of the three species, but was occasionally seen in the subendocardium of the ventricular septum. Ultrastructurally, the ANP granules in the auricular and atrial cardiocytes were observed to be variable in size and number, and these granules were located principally in the paranuclear region in association with the Golgi apparatus, and found throughout the sarcoplasmic layers in all three species. The ANP granules were classified into two types: A-granules containing a conspicuous electron-dense core possessing a membrane, and B-granules having profiles with a fibrillogranular, less electron-dense core than the A-granules and an indistinct membrane. The features of these granules were similar in all three species. When examined by ultrastructural morphometry, the number of each type granule and the total number of granules in the right auricular and atrial cardiocytes of the mouse and rat were significantly greater than in the Mongolian gerbil. The total number of granules in the right auricular cardiocytes was significantly greater than in the cardiocytes of the right atrium exclusive of the auricle, however, there was no significant difference between the number of A-granules and B-granules in the three species. The diameter of each type of granule in the right auricular and atrial cardiocytes of the mouse and rat was significantly greater than in the Mongolian gerbil, and the diameter of the A-granules was significantly greater than the diameter of the B-granules in all three species.  相似文献   

10.
Effects of Bay K 8644, a voltage-sensitive calcium channel agonist, on atrial natriuretic polypeptide (ANP) secretion from isolated rat hearts perfused with Krebs-Henseleit solution were investigated. After a ninety-min period for stabilization, coronary sinus effluents were collected every two min and ANP levels were measured by radioimmunoassay. The basal secretory rate of ANP was 1.65 +/- 0.15 ng/min (mean +/- standard error). Bay K 8644 stimulated ANP secretion dose-dependently. This stimulatory action was blocked by simultaneous administration of nifedipine, its competitive antagonist. Heart rate was also increased by Bay K 8644 administration. In the gel filtration study, the major secretory form of ANP corresponded to alpha-rat ANP, a 28-amino acid peptide. These results suggest that voltage-sensitive calcium channels are involved in two principal biological properties, contraction and ANP secretion, of atrial cardiocytes.  相似文献   

11.
Using primary cultures of atrial cardiocytes from neonatal pig, the secretion brain natriuretic peptide (BNP) and atrial natriuretic peptide (ANP)-like immunoreactivities (LI) was studied in vitro. Porcine cardiocytes time-dependently secreted both BNP-LI and ANP-LI into medium under a serum-free condition, although the amount of BNP-LI secreted was about one-third that of ANP-LI. Phorbol ester and Ca2+ ionophore had less stimulatory effects on secretion of BNP-LI than that of ANP-LI. Reverse-phase HPLC of the conditioned medium revealed a single major BNP-LI component corresponding to synthetic porcine BNP(1-26). These data suggest that a small molecular weight form BNP, possibly BNP(1-26), is cosecreted with ANP from porcine cardiocytes.  相似文献   

12.
Summary Specific granules in porcine hearts were observed in atrial cardiocytes, Purkinje fibers, and transitional cells of the ventricle. These granule-containing cells were immunohistochemically stained by applying the avidin-biotin-peroxidase complex method using an antiserum against -human atrial natriuretic polypeptide (ANP). Immunoelectron microscopy of sections stained using the immunogold method indicated that these specific granules are storage sites of ANP. Furthermore, an impulse-conducting system consisting of immunoreactive cells was clearly distinguishable from nonimmunoreactive ventricular cardiocytes. We conclude that specific-granule-containing cells, i.e., ANP-producing cells, are located in both the atrial walls and the ventricular impulse-conducting system. The presence of ANP may be correlated with impulse conduction.  相似文献   

13.
Summary Antibodies produced in the mouse by repeated intraperitoneal injections of partly purified atrial natriuretic factor (low molecular weight peptide (LMWP) and high molecular weight peptide (HMWP)) have been used to localize these factors by immunohistochemistry (immunofluorescence and immunoperoxidase method) and by immunocytochemistry (protein A-gold technique) in the heart of rats and of a variety of animal species including man and in the rat salivary glands. Immunofluorescence and the immunoperoxidase method gave identical results: in the rat, atrial cardiocytes gave a positive reaction at both nuclear poles while ventricular cardiocytes were consistently negative. The cardiocytes of the right atrial appendage were more intensely reactive than those localized in the left appendage. A decreasing gradient of intensity was observed from the subpericardial to the subendocardial cardiocytes. The cardiocytes of the interatrial septum were only lightly granulated. Sodium deficiency and thirst (deprivation of drinking water for 5 days) produced, as already shown at the ultrastructural level, a marked increase in the reactivity of all cardiocytes from both atria with the same gradient of intensity as in control animals. Cross-reactivity of intragranular peptides with the rat antibodies allowed visualization of specific granules in a variety of animal species (mouse, guinea pig, rabbit, rat, dog) and in human atrial appendages. No reaction could be elicited in the frog atrium and ventricle although, in this species, specific granules have been shown to be present by electron microscopy in all cardiac chambers. With the protein A-gold technique, at the ultrastructural level, single labeling (use of one antibody on one face of a fine section) or double labeling (use of two antibodies on the two faces of a fine section) showed that the two peptides are localized simultaneously in all three types (A, B and D) of specific granules. In the rat salivary glands, immunofluorescence and the immunoperoxidase method showed reactivity exclusively in the acinar cells. The reaction was most intense in the acinar cells of the parotid gland. In the sublingual gland, only the serous cells, sometimes forming abortive demi-lunes, were reactive. In the submaxillary gland, the reaction was weaker and distributed seemingly haphazardly in the gland. The most constantly reactive cells were localized near the capsule while many cells did not contain visible reaction product.  相似文献   

14.
Summary The ultrastructure of porcine ventricular tissue was studied by electron microscopy and immunocytochemical techniques. Electron-dense specific granules were found in both Purkinje fibers and transitional cells in the ventricular walls, and were positively stained by the immunogold staining method using an antiserum against atrial natriuretic polypeptide (ANP). This suggests that both the Purkinje fibers and transitional cells display the same specific granules as atrial cardiocytes containing ANP. These results demonstrate that Purkinje fibers and two types of transitional cells, in addition to the ordinary ventricular cardiocytes, can be identified in porcine ventricular wall tissue.  相似文献   

15.
To investigate the role of inositol phospholipid turnover in the atrial natriuretic peptide (ANP) secretion, the secretory responses from isolated perfused rat hearts to the ionophore, A23187, and the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), alone or in combination, were studied. A23187 induced a sharp increase in ANP secretion, whereas TPA caused a slowly progressive increase in secretion rate. 4 alpha-phorbol-12,13-didecanoate, which lacks the ability to activate protein kinase C, had no effect on ANP secretion. The combination of A23187 and TPA stimulated ANP secretion higher than the calculated additive value for each agent. The synergistic effect of the agents suggests a role of calcium-activated protein kinase C in ANP secretion from atrial cardiocytes.  相似文献   

16.
The localization of the N-terminal fragment of the atrial natriuretic factor (ANF) precursor in the heart of the frog Rana ridibunda was examined by the indirect immunofluorescence and the immunogold techniques using an antiserum directed against synthetic rat ANF (Asp11-Ala37). At the optic level, positive material was found in most atrial myocytes. Staining of consecutive sections of frog heart with antibodies against N-terminal and C-terminal regions of the proANF molecule showed that both peptides are contained in the same cardiocytes. In the rat atrium, antibodies against the N-terminal ANF region induced a more intense labeling than in the frog atrium. Electron microscopic studies indicated that all secretory granules present in frog atrial cardiocytes contain N-terminal ANF-like immunoreactive material. The positive material localized in frog atrium was characterized by gel filtration and radioimmunological detection. Serial dilutions of frog atrial extracts exhibited displacement curves which were parallel to that obtained with synthetic human ANF (Asn1-Asp30). Sephadex G-50 gel chromatography of the immunoreactive material showed that the N-terminal ANF-like immunoreactivity eluted in a single peak corresponding to high molecular weight material. These results indicate that the N-terminal fragment of frog proANF is immunologically and biochemically related to the homologous mammalian peptide.  相似文献   

17.
The distribution of an atrial natriuretic peptide (ANP)-like material in the cardiocytes of larval, metamorphosing, and adult specimens (both breeding and non-breeding) of the toad, Bufo japonicus formosus , was studied immunohistochemically, ultrastructurally and immunocytochemically. Histochemically, ANP-immunoreaction was positive in the atrium and ventricle in stage 33 larvae, while negative in the ventricle in stage 40 larvae. In adult toads, the reaction was stronger in the right than in the left atrium but quite weak in the ventricles, particularly those of non-breeding specimens. Electron microscopy indicated a very small number of secretory granules in the atrial and ventricular cardiocytes of embryos as early as the limb-bud stage (stage 28), and as development proceeded, the number of these granules increased rapidly in atrial but not in ventricular cardiocytes. In metamorphosing animals, a small population of larger granules (200–250 nm) was noted next to those of ordinary size (the median, 110 nm) in the same cell. In adult toads, granules of about 120 nm and 200 nm in median size were found in the same cell. Postembedding immunogold staining consistently indicated ANP-immunoreactivity in these granules in atrial and ventricular cardiocytes. The plasma content of immunoreactive ANP was considerably higher in breeding (20.5 ± 5.9 pg/ml) than in non-breeding toads (5.4 ± 1.7 pg/ml). These results are discussed in relation to presently available data on the physiological role of ANP.  相似文献   

18.
Summary Atrial natriuretic peptide (ANP) levels in cardiocytes and plasma were examined by using immunohistochemistry, electron microscopy, and radioimmunoassay in non-obese diabetic mice (NOD). Cardiocyte ANP mRNA expression was measured by the polymerase chain reaction method. ANP immunoreactivity in the auricular cardiocytes was more prominent in hyperglycemic mice (NOD-h) than in normoglycemic mice (NOD-n). Ultrastructural examination showed that auricular cardiocytes of the NOD-h group contained more cytoplasmic granules than cells of the NOD-n group. Ultrastructural morphometry indicated that the number of granules per auricular cardiocyte was significantly larger in the NOD-h group than in the NOD-n group. (P<0.01), whereas the granule diameter was significantly smaller in the NOD-h group (P<0.01). Radioimmunoassay showed that ANP levels in the NOD-h auricular cardiocytes were significantly higher than those in the NOD-n cardiocytes (P<0.01); the opposite was true in plasma. Cardiocyte ANP mRNA expression was lower in the NOD-h group than in the NOD-n group.  相似文献   

19.
20.
Atrial natriuretic peptide (ANP) is a polypeptide hormone secreted primarily by atrial myoendocrine cells. It has diuretic, natriuretic and vasorelaxant effects. ANP has been characterized by non-morphological methods in a number of extra-atrial tissues, particularly the hypothalamus, but little is known of the immunohistochemistry of hypothalamic ANP cells in comparison to atrial ones. Although the presence of ANP-producing cells has previously been confirmed in the right atrium of the rat and other vertebrate species, to our knowledge, this is the first study to demonstrate the presence of these cells in the hypothalamus using a purely morphological method such as electron microscopy. The fine structural and immunohistochemical characteristics of right atrial and hypothalamic ANP positive cells were investigated using immunogold labeling with goat anti-alpha-human ANP (1-28) as primary antibody. Atrial ANP cells were characterized by the presence of membrane-bound electrondense spherical or oval granules with a diameter of about 250 nm. The opaque content of the granules is separated from the limiting membrane by a thin electron translucent band about 20 nm wide. Electron dense crystalloid inclusions were evident within the granule matrix of some atrial ANP granules. Hypothalamic ANP granules were membrane-bound larger in diameter (320 nm), and less electron dense, and lacked crystalloid inclusions. Statistical analyses revealed a significant larger diameter and a significant smaller number of hypothalamic ANP granules compared to atrial ones. The significantly greater number of atrial ANP positive granules suggests a greater volume capacity for the atrial ANP positive granules as compared to the hypothalamic ones. This may indicate that ANP is secreted primarily from the right atrium and to a lesser extent from the hypothalamus; and that both atrial and hypothalamic ANP are closely related in chemical nature and immunohistochemical characteristics. This supports the suggestion that ANP may play the dual role of peripheral hormone and a neurotransmitter or neuromediator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号