首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tonoplast K(+) membrane transport system plays a crucial role in maintaining K(+) homeostasis in plant cells. Here, we isolated cDNAs encoding a two-pore K(+) channel (NtTPK1) from Nicotiana tabacum cv. SR1 and cultured BY-2 tobacco cells. Two of the four variants of NtTPK1 contained VHG and GHG instead of the GYG signature sequence in the second pore region. All four products were functional when expressed in the Escherichia coli cell membrane, and NtTPK1 was targeted to the tonoplast in tobacco cells. Two of the three promoter sequences isolated from N. tabacum cv. SR1 were active, and expression from these was increased approximately 2-fold by salt stress or high osmotic shock. To determine the properties of NtTPK1, we enlarged mutant yeast cells with inactivated endogenous tonoplast channels and prepared tonoplasts suitable for patch clamp recording allowing the NtTPK1-related channel conductance to be distinguished from the small endogenous currents. NtTPK1 exhibited strong selectivity for K(+) over Na(+). NtTPK1 activity was sensitive to spermidine and spermine, which were shown to be present in tobacco cells. NtTPK1 was active in the absence of Ca(2+), but a cytosolic concentration of 45 microM Ca(2+) resulted in a 2-fold increase in the amplitude of the K(+) current. Acidification of the cytosol to pH 5.5 also markedly increased NtTPK1-mediated K(+) currents. These results show that NtTPK1 is a novel tonoplast K(+) channel belonging to a different group from the previously characterized vacuolar channels SV, FV, and VK.  相似文献   

2.
High-affinity K+ uptake in pepper plants   总被引:1,自引:0,他引:1  
High-affinity K+ uptake is an essential process for plant nutrition under K+-limiting conditions. The results presented here demonstrate that pepper (Capsicum annuum) plants grown in the absence of NH4+ and starved of K+ show an NH4+-sensitive high-affinity K+ uptake that allows plant roots to deplete external K+ to values below 1 microM. When plants are grown in the presence of NH4+, high-affinity K+ uptake is not inhibited by NH4+. Although NH4+-grown plants deplete external K+ below 1 microM in the absence of NH4+, when 1 mM NH4+ is present they do not deplete external K+ below 10 microM. A K+ transporter of the HAK family, CaHAK1, is very likely mediating the NH4+-sensitive component of the high-affinity K+ uptake in pepper roots. CaHAK1 is strongly induced in the roots that show the NH4+-sensitive high-affinity K+ uptake and its induction is reduced in K+-starved plants grown in the presence of NH4+. The NH4+-insensitive K+ uptake may be mediated by an AKT1-like K+ channel.  相似文献   

3.
Human blood T-lymphocytes increase their potassium (K+) permeability and active K+ transport following lectin or antigen stimulation. We have studied the permeability and active transport of K+ by lymphocytes in chronic lymphocytic leukemia (CLL) to determine if their membrane K+ transport was similar to resting or lectin-stimulated normal blood lymphocytes. K+ transport was assessed both by the rate of isotopic 42K+ uptake and by the rate of change in cell K+ concentration after inhibition of the K+ transport system with ouabain. CLL lymphocytes had a marked decrease in membrane K+ permeability and active transport of K+ when compared to blood T lymphocytes. K+ transport in five subjects with CLL (10 mmol.1 cell water-1.h-1) was half that in normal blood T-lymphocytes (20 mmol.1 cell water-1 h-1). Phytohemagglutinin (PHA) treatment of CLL lymphocytes did not increase significantly their active K+ transport, whereas K+ transport by normal T-lymphocytes increased by 100%. Since there were 73% T-lymphocytes in normal blood and 14% in CLL blood, the difference in membrane K+ turnover could be related either to neoplasia or to the proposed B-lymphocyte origin of CLL. We studied human tonsillar lymphocytes which contained a mean of 34% T-cells. In five studies of tonsils, K+ transport was 14 mmol.1 cell water-1.h-1 and treatment with PHA increased K+ transport only 30%. The intermediate values of basal K+ transport and K+ transport in response to PHA in tonsillar lymphocytes were consistent with the proportion of T-lymphocytes present. These data suggest that B-lymphocytes have reduced membrane permeability and active transport of K+. Thus the marked decrease in CLL lymphocyte membrane K+ permeability and transport may be a reflection of its presumed B-cell origin, rather than a membrane alteration related to malignant transformation.  相似文献   

4.
5.
6.
1. In the neurogenic heart of the isopod crustacean Porcellio dilatatus, external K+ removal depolarized the membrane (K0 effect) whereas subsequent restoration of K+ resulted in a rapid hyperpolarization (K1 effect). 2. The amplitude of the K1 effect depended on the duration of the prior K+ deprivation and on the subsequent K+ concentration. 3. The membrane resistance slightly increased during the K0 effect; during the K1 effect, it only returned to its control value. 4. Ouabain, cooling and replacement of external Na+ by Li+ also produced depolarization. 5. The K1 effect was suppressed by ouabain and markedly depressed by lowering the temperature to 4-6 degrees C. It was abolished if Li+ replaced Na+ during the prior privation of K+; moreover Li+ was unable to act as a substitute for external K+ in generating the K1 effect if used at equivalent concentration, but enhanced the effect at high concentration. 6. The findings are consistent with the presence of an electrogenic sodium pump in the myocardium of Porcellio contributing to the resting membrane potential. 7. Changes in the spontaneous rhythm observed during K0 and K1 are further suggestive of the presence of an electrogenic Na+ pump in the pacemaker neurons of the cardiac ganglion. Another explanation is also proposed. 8. The magnitude of the spontaneous contractions of the heart was increased during the K0 effect and markedly decreased during the K1 effect. An indirect effect of the changes in internal Na+ concentration on the contractile processes is suggested.  相似文献   

7.
(Na+ + K+)-dependent ATPase preparations from rat brain, dog kidney, and human red blood cells also catalyze a K+ -dependent phosphatase reaction. K+ activation and Na+ inhibition of this reaction are described quantitatively by a model featuring isomerization between E1 and E2 enzyme conformations with activity proportional to E2K concentration: (formula; see text) Differences between the three preparations in K0.5 for K+ activation can then be accounted for by differences in equilibria between E1K and E2K with dissociation constants identical. Similarly, reductions in K0.5 produced by dimethyl sulfoxide are attributable to shifts in equilibria toward E2 conformations. Na+ stimulation of K+ -dependent phosphatase activity of brain and red blood cell preparations, demonstrable with KCl under 1 mM, can be accounted for by including a supplementary pathway proportional to E1Na but dependent also on K+ activation through high-affinity sites. With inside-out red blood cell vesicles, K+ activation in the absence of Na+ is mediated through sites oriented toward the cytoplasm, while in the presence of Na+ high-affinity K+ -sites are oriented extracellularly, as are those of the (Na+ + K+)-dependent ATPase reaction. Dimethyl sulfoxide accentuated Na+ -stimulated K+ -dependent phosphatase activity in all three preparations, attributable to shifts from the E1P to E2P conformation, with the latter bearing the high-affinity, extracellularly oriented K+ -sites of the Na+ -stimulated pathway.  相似文献   

8.
Specific effects of spermine on Na+,K+-adenosine triphosphatase   总被引:2,自引:0,他引:2  
Specific effects of spermine on Na+,K+-ATPase were observed using an enzyme partially purified from rabbit kidney microsomes by extraction with deoxycholate. 1. Spermine competed with K+ for K+-dependent, ouabain-sensitive nitrophenylphosphatase. The K1 for spermine was 0.075 mm in the presence of 1 mM Mg2+ and 5 mM p-nitrophenylphosphate at pH 7.5. 2. spermine activated Na+,K+-ATPase over limited concentration ranges of K+ and Na+ in the presence of 0.05 mM ATP. The spermine concentration required for half maximal activation was 0.055 mM in the presence of 1 mM K+, 10 mM Na+, 1 mM Mg2+, and 0.05 mM ATP. 3. The activation of Na+,K4-ATPase was not due to substitution of spermine for K+, Na+, or Mg2+. 4. When the concentration of K+ or Na+ was extremely low, or in excess, spermine did not activate Na+,K+-ATPase, but inhibited it slightly. 5. Plots of 1/v vs. 1/[ATP] at various concentrations of spermine showed that spermine decreased the Km for ATP without changing the Vmax. 6. Plots of 1/v vs. 1/[ATP] at concentrations of K+ from 0.05 mM to 0.5 mM showed that K+ increased the Km for ATP with increase in the Vmax in the presence of 0.2 mM spermine similarly to that in the absence of spermine. The contradictory effects of spermine on this enzyme system suggest that the K+-dependent monophosphatase activity does not reflect the second half (the dephosphorylation step) of the Na+,K+-ATPase catalytic cycle.  相似文献   

9.
The function of HKT1 in roots is controversial. We tackled this controversy by studying Na+ uptake in barley (Hordeum vulgare) roots, cloning the HvHKT1 gene, and expressing the HvHKT1 cDNA in yeast (Saccharomyces cerevisiae) cells. High-affinity Na+ uptake was not detected in plants growing at high K+ but appeared soon after exposing the plants to a K(+)-free medium. It was a uniport, insensitive to external K+ at the beginning of K+ starvation and inhibitable by K+ several hours later. The expression of HvHKT1 in yeast was Na+ (or K+) uniport, Na(+)-K+ symport, or a mix of both, depending on the construct from which the transporter was expressed. The Na+ uniport function was insensitive to external K+ and mimicked the Na+ uptake carried out by the roots at the beginning of K+ starvation. The K+ uniport function only took place in yeast cells that were completely K+ starved and disappeared when internal K+ increased, which makes it unlikely that HvHKT1 mediates K+ uptake in roots. Mutation of the first in-frame AUG codon of HvHKT1 to CUC changed the uniport function into symport. The expression of the symport from either mutants or constructs keeping the first in-frame AUG took place only in K(+)-starved cells, while the uniport was expressed in all conditions. We discuss here that the symport occurs only in heterologous expression. It is most likely related to the K+ inhibitable Na+ uptake process of roots that heterologous systems fail to reproduce.  相似文献   

10.
AtKuP1: a dual-affinity K+ transporter from Arabidopsis.   总被引:19,自引:0,他引:19       下载免费PDF全文
H H Fu  S Luan 《The Plant cell》1998,10(1):63-73
Plant roots contain both high- and low-affinity transport systems for uptake of K+ from the soil. In this study, we characterize a K+ transporter that functions in both high- and low-affinity uptake. Using yeast complementation analysis, we isolated a cDNA for a functional K+ transporter from Arabidopsis (referred to as AtKUP1 for Arabidopsis thaliana K+ uptake). When expressed in a yeast mutant, AtKUP1 dramatically increased K+ uptake capacity at both a low and high [K+] range. Kinetic analyses showed that AtKUP1-mediated K+ uptake displays a "biphasic" pattern similar to that observed in plant roots. The transition from the high-affinity phase (K(m) of 44 microM) to the low-affinity phase (K(m) of 11 mM) occurred at 100 to 200 microM external K+. Both low- and high-affinity K+ uptake via AtKUP1 were inhibited by 5 mM or higher concentrations of NaCl. In addition, AtKUP1-mediated K+ uptake was inhibited by K+ channel blockers, including tetraethylammonium, Cs+, and Ba2+. Consistent with a possible function in K+ uptake from the soil, the AtKUP1 gene is primarily expressed in roots. We conclude that the AtKUP1 gene product may function as a K+ transporter in Arabidopsis roots over a broad range of [K+] in the soil.  相似文献   

11.
A transferred-DNA insertion mutant of Arabidopsis that lacks AKT1 inward-rectifying K+ channel activity in root cells was obtained previously by a reverse-genetic strategy, enabling a dissection of the K+-uptake apparatus of the root into AKT1 and non-AKT1 components. Membrane potential measurements in root cells demonstrated that the AKT1 component of the wild-type K+ permeability was between 55 and 63% when external [K+] was between 10 and 1,000 microM, and NH4+ was absent. NH4+ specifically inhibited the non-AKT1 component, apparently by competing for K+ binding sites on the transporter(s). This inhibition by NH4+ had significant consequences for akt1 plants: K+ permeability, 86Rb+ fluxes into roots, seed germination, and seedling growth rate of the mutant were each similarly inhibited by NH4+. Wild-type plants were much more resistant to NH4+. Thus, AKT1 channels conduct the K+ influx necessary for the growth of Arabidopsis embryos and seedlings in conditions that block the non-AKT1 mechanism. In contrast to the effects of NH4+, Na+ and H+ significantly stimulated the non-AKT1 portion of the K+ permeability. Stimulation of akt1 growth rate by Na+, a predicted consequence of the previous result, was observed when external [K+] was 10 microM. Collectively, these results indicate that the AKT1 channel is an important component of the K+ uptake apparatus supporting growth, even in the "high-affinity" range of K+ concentrations. In the absence of AKT1 channel activity, an NH4+-sensitive, Na+/H+-stimulated mechanism can suffice.  相似文献   

12.
I A Skul'ski? 《Tsitologiia》1991,33(11):118-129
Thallium ions (T1+) are able to isomorphous replacement of K+ in various minerals. The similarity between. T1+ and K+ is based upon the closeness of their crystal radii, hydration energy and mobility in aqueous solutions. Under certain conditions, the behaviour of T1+ can be substantially different from that of K+. As distinguished from K+, thallium ions tend to associate with different anions forming ion pairs and complexes. As a rule, the stability of these compounds is rather low, but in many cases the T(1+)-anion interactions appear to play an important role in discriminating between T1+ and K+ involved in transport processes. T1+/K(+)-selectivity characterizes K(+)-transport mechanisms operating in different kinds of cells membranes. In excitable membranes (muscles, nerves) the rates of passive transport of T1+ and K+ are similar. In non-excitable membranes (epithelial cells, red blood cells, mitochondrial membranes, bacteria) the T1+ passive permeability is about one or two orders of magnitude higher than that of K+. A moderate T1+/K(+)-selectivity was reported for various types of K+ active transport mechanisms.  相似文献   

13.
Inward-rectifying K+ (K+in) channels in the guard cell plasma membrane have been suggested to function as a major pathway for K+ influx into guard cells during stomatal opening. When K+in channels were blocked with external Cs+ in wild-type Arabidopsis guard cells, light-induced stomatal opening was reduced. Transgenic Arabidopsis plants were generated that expressed a mutant of the guard cell K+in channel, KAT1, which shows enhanced resistance to the Cs+ block. Stomata in these transgenic lines opened in the presence of external Cs+. Patch-clamp experiments with transgenic guard cells showed that inward K+(in) currents were blocked less by Cs+ than were K+ currents in controls. These data provide direct evidence that KAT1 functions as a plasma membrane K+ channel in vivo and that K+in channels constitute an important mechanism for light-induced stomatal opening. In addition, biophysical properties of K+in channels in guard cells indicate that components in addition to KAT1 may contribute to the formation of K+in channels in vivo.  相似文献   

14.
Potassium-inhibited processing of IL-1 beta in human monocytes.   总被引:9,自引:0,他引:9       下载免费PDF全文
I Walev  K Reske  M Palmer  A Valeva    S Bhakdi 《The EMBO journal》1995,14(8):1607-1614
Agents that deplete cells of K+ without grossly disrupting the plasma membrane were found to stimulate the cleavage of pro-interleukin (IL)-1 beta to mature IL-1 beta. Agents examined in this study included staphylococcal alpha-toxin and gramicidin, both of which selectively permeabilize plasma membranes for monovalent ions, the ionophores nigericin and valinomycin, and the Na+/K+ ATPase inhibitor ouabain. K+ depletion by brief hypotonic shock also triggered processing of pro-IL-1 beta. The central role of K+ depletion for inducing IL-1 beta maturation was demonstrated in cells permeabilized with alpha-toxin: processing of pro-IL-1 beta was totally blocked when cells were suspended in medium that contained high K+, but could be induced by replacing extracellular K+ with Na+, choline+ or sucrose. To test whether K+ flux might also be important in physiological situations, monocytes were stimulated with lipopolysaccharide (LPS) for 1-2 h to trigger pro-IL-1 beta synthesis, and transferred to K(+)-rich medium. This maneuver totally suppressed IL-1 beta maturation. Even after 16 h, however, removal of K+ from the medium resulted in rapid processing and export of IL-1 beta. Ongoing export of mature IL-1 beta from cells stimulated with LPS for 2-6 h could also be arrested by transfer to K(+)-rich medium. Moreover, a combination of two K+ channel blockers inhibited processing of IL-1 beta in LPS-stimulated monocytes. We hypothesize that K+ movement and local K+ concentrations directly or indirectly influence the action of interleukin-1 beta-converting enzyme (ICE) and, possibly, of related intracellular proteases.  相似文献   

15.
C. H. Ko  A. M. Buckley    R. F. Gaber 《Genetics》1990,125(2):305-312
TRK1, the gene encoding the high affinity K+ transporter in Saccharomyces cerevisiae, is nonessential due to the existence of a functionally independent low affinity transporter. To identify the gene(s) encoding the low affinity K+ transporter, we screened trk1 delta cells for mutants (Kla-) that require higher concentrations of K+ in the medium to support growth. trk1 delta trk2 mutants require up to tenfold higher concentrations of K+ to exhibit normal growth compared to trk1 delta TRK2 cells. K+ and 86Rb+ transport assays demonstrate that the mutant phenotype is due to defective K+ transport (uptake). Each of 38 independent mutants contains a mutation in the same gene, TRK2. Cells deficient for both high and low affinity K+ transport (trk1 delta trk2) exhibit hypersensitivity to low extracellular pH that can be suppressed by high concentrations of K+ but not Na+. TRK1 completely suppresses both the K+ transport defect and low pH hypersensitivity of trk2 cells, suggesting that TRK1 and TRK2 are functionally independent.  相似文献   

16.
It is well established that endothelin-1 (ET-1) plays a role in differentiation and proliferation in a variety of cells such as fibroblasts and human melanoma cells via a receptor-mediated mechanism. However, whether ET-1 modulates ion channel activity in these cell types is still unknown. In this report, we recorded the voltage-dependent outward K+ current in cultured B16 melanoma cells using the patch-clamp technique. Biophysical and pharmacological properties of the K+ current, and the effect of ET-1 on the K+ current were investigated. When cells were loaded with a Ca(2+)-chelating agent (EGTA or BAPTA), the K+ current amplitude gradually increased with time after establishment of the whole cell configuration. Replacement of Ca2+ with Co2+ in the extracellular medium caused no significant modulation of the K+ current amplitude. Addition of BaCl2 or quinidine to the extracellular solution reduced the K+ current amplitude, whereas the K+ current was insensitive to tetraethylammonium. ET-1 (10 nM) reversibly decreased the K+ current amplitude and accelerated the decay of the K+ current. The ET-1-induced inhibitory effect displayed no desensitization following repeated ET-1 application. Pretreatment with pertussis toxin (PTX) or perfusion of cells with the protein kinase C (PKC) inhibitor H-7 abolished the inhibitory effect of ET-1 on the K+ current. We conclude that the outward K+ current recorded in murine B-16 melanoma cells represents a Ca(2+)-inactivated K+ current, and that the inhibitory effect of ET-1 on the K+ current may reveal a novel mechanism to control the differentiation and proliferation of melanoma cells.  相似文献   

17.
1. Monitoring protein conformations of purified (Na+ + K+)-ATPase with intrinsic fluorescence we have examined if altered conformational responses accompany the defective catalytic and transport processes in selectively modified 'invalid' (Na+ + K+)-ATPase which is obtained by graded tryptic digestion of the Na+ form of the protein. 2. The protein fluorescence intensity of the K+ form (E2K) of both control and invalid (Na+ + K+)-ATPase is 2--3% higher than that of the Na+ form (E1Na). By varying the NaCl concentration we found evidence for different fluorescence intensities of the two phosphoenzymes; E2P has the same fluorescence intensity as E2K and the intensity of E1P is similar to that of E1Na. The fraction of phosphoenzyme present as E2P can therefore be determined as the amplitude of the fluorescence change accompanying phosphorylation in the absence of K+ divided by the amplitude of the full response to K+. 3. Titration of the fluorescence responses of the invalid (Na+ + K+)-ATPase shows that the tryptic split alters the noise of the equilibria between the cation-bound conformations, E1Na and E2K, and between the phosphoforms, E1P and E2P, in the direction of the E1 forms. 4. Vanadate binds to the Mg2+-bound form of E2K and prevents further changes in fluorescence intensity of the protein. The conformative responses of invalid (Na+ + K+)-ATPase are insensitive to vanadate in agreement with the reduced vanadate binding affinity of this enzyme. 5. The defective conformative response of the invalid (Na+ + K+)-ATPase in relation to its catalytic defects, reduced Na+ transport, and insensitivity to vanadate suggest that the transitions between Na+ forms (E1) and K+ forms (E2) of the protein are coupled to the catalytic and transport reactions of the (Na+ + K+)-pump.  相似文献   

18.
19.
Showdomycin inhibited pig brain (Na+ + K+)-ATPase with pseudo first-order kinetics. The rate of inhibition by showdomycin was examined in the presence of 16 combinations of four ligands, i.e., Na+, K+, Mg2+ and ATP, and was found to depend on the ligands added. Combinations of ligands were divided into five groups in terms of the magnitude of the rate constant; in the order of decreasing rate constants these were: (1) Na+ + Mg2+ + ATP, (2) Mg2+, Mg2+ + K+, K+ and none, (3) Na+ + Mg2+, Na+, K+ + Na+ and Na+ + K+ + Mg2+, (4) Mg2+ + K+ + ATP, K+ + ATP and Mg2+ + ATP, (5) K+ + Na + + ATP, Na+ + ATP, Na+ + K+ + Mg2+ + ATP and ATP. The highest rate was obtained in the presence of Na+, Mg2+ and ATP. The apparent concentrations of Na+, Mg2+ and ATP for half-maximum stimulation of inhibition (KS0.5) were 3 mM, 0.13 mM and 4 MicroM, respectively. The rate was unchanged upon further increase in Na+ concentration from 140 to 1000 mM. The rates of inhibition could be explained on the basis of the enzyme forms present, including E1, E2, ES, E1-P and E2-P, i. e., E2 has higher reactivity with showdomycin than E1, while E2-P has almost the same reactivity as E1-P. We conclude that the reaction of (Na+ + K+)- ATPase proceeds via at least four kinds of enzyme form (E1, E2, E1 . nucleotide and EP), which all have different conformations.  相似文献   

20.
The effect of NH4+ ions on (Na+,K+)-ATPase hydrolytic activity was examined in a gill microsomal fraction from M. olfersii. In the absence of NH4+ ions, K+ ions stimulated ATP hydrolysis, exhibiting cooperative kinetics (nH=0.8), to a maximal specific activity of V=556.1+/-22.2 nmol.min(-1).mg(-1) with K(0.5)=2.4+/-0.1 mmol.L(-1). No further stimulation by K+ ions was observed in the presence of 50 mmol.L(-1) NH4+ ions. ATP hydrolysis was also stimulated by NH4+ ions obeying Michaelian kinetics to a maximal specific activity of V=744.8+/-22.3 nmol.min(-1).mg(-1) and KM=8.4+/-0.2 mmol.L(-1). In the presence of 10 mmol.L(-1) K+ ions, ATP hydrolysis was synergistically stimulated by NH4+ ions to V=689.8+/-13.8 nmol.min(-1).mg(-1) and K(0.5)=6.6+/-0.1 mmol.L(-1), suggesting that NH4+ ions bind to different sites than K+ ions. PNPP hydrolysis was also stimulated cooperatively by K+ or NH4+ ions to maximal values of V= 235.5+/-11.8 nmol.min(-1).mg(-1) and V=234.8+/-7.0 nmol.min(-1).mg(-1), respectively. In contrast to ATP hydrolysis, K(+)-phosphatase activity was not synergistically stimulated by NH4+ and K+ ions. These data suggest that at high NH4+ ion concentrations, the (Na+, K+)-ATPase exposes a new site; the subsequent binding of NH4+ ions stimulates ATP hydrolysis to rates higher than those for K+ ions alone. This is the first demonstration that (Na+, K+)-ATPase activity in a freshwater shrimp gill is modulated by ammonium ions, independently of K+ ions, an effect that may constitute a fine-tuning mechanism of physiological relevance to osmoregulatory and excretory processes in palaemonid shrimps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号