首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shrivastava R  Ghosh AK  Das AK 《FEBS letters》2007,581(9):1903-1909
The two-component signal transduction system from Mycobacterium tuberculosis bears a unique three-protein system comprising of two putative histidine kinases (HK1 and HK2) and one response regulator TcrA. By sequence analysis, HK1 is found to be an adenosine 5'-triphosphate (ATP) binding protein, similar to the nucleotide-binding domain of homologous histidine kinases, and HK2 is a unique histidine containing phosphotransfer (HPt)-mono-domain protein. HK1 is expected to interact with and phosphorylate HK2. Here, we show that HK1 binds 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate monolithium trisodium salt and ATP with a 1:1 stoichiometric ratio. The ATPase activity of HK1 in the presence of HK2 was measured, and phosphorylation experiments suggested that HK1 acts as a functional kinase and phosphorylates HK2 by interacting with it. Further phosphorylation studies showed transfer of a phosphoryl group from HK2 to the response regulator TcrA. These results indicate a new mode of interaction for phosphotransfer between the two-component system proteins in bacteria.  相似文献   

2.
To study the Populus response to an osmotic stress, we have isolated one cDNA encoding a histidine-aspartate kinase (HK1) and four cDNAs encoding histidine-containing phosphotransfer proteins (HPts), HPt1-4. The predicted HK1 protein shares a typical structure with ATHK1 and SLN1 osmosensors. The 4 HPTs are characterized by the histidine phosphotransfer domain. We have shown that HK1 is upregulated during an osmotic stress in hydroponic culture. We have detected an interaction between HK1 and HPt2, using the yeast two-hybrid system. These results suggest the existence of a multi-step phosphorelay pathway probably involved in osmotic stress sensing in Populus.  相似文献   

3.
4.
A modified form (HK I(+)) of rat Type I hexokinase (HK I) has been expressed. HK I(+) contains a centrally located polyalanine insert which, along with the known helical propensity of adjacent sequence, was expected to lead to alpha-helix formation, with resulting distension of the molecule and disruption of interactions between the N- and C-terminal halves. The properties of HK I(+) are consistent with this expectation and with previous proposals that (1) inhibition of HK I by Glc-6-P or its analogs and antagonism of this inhibition by P(i) result from competition of these ligands for a binding site in the N-terminal half of HK I, with resulting conformational changes propagated through interactions with the catalytic C-terminal half, and (2) binding of Glc-6-P to a site in the C-terminal half of HK I is obstructed by interactions between the halves, present in HK I but not HK I(+).  相似文献   

5.
A unique three protein two-component system is present in Mycobacterium tuberculosis comprising of two histidine kinases (Rv0600c/HK1 and Rv0601c/HK2) and a response regulator (Rv0602c/TcrA). The HK2 is a novel HPt-mono domain protein absent in other bacteria. We present here the temperature and urea induced denaturation study of HK1 and HK2 using circular dichroism and fluorescence spectroscopy. HK1 and HK2 are thermally quite stable. Thermal transition of HK1 is a two-state process and that of HK2 is a three-state process. Urea denaturation of HK1 and HK2 is a three-state and two-state process, respectively. The DeltaG degrees of the two transitions during urea induced unfolding of HK1 is 4.76+/-0.6 kcal/mol and -7.11+/-0.8 kcal/mol. Unfolding of HK2 in presence of urea has DeltaG degrees of 4.766+/-0.5 kcal/mol. The intrinsic fluorescence study of HK2 unfolding implies flexibility of proline rich loop in the tryptophan bearing HAMP domain.  相似文献   

6.
The urokinase plasminogen activator receptor (uPAR) is a multifunctional, GPI-linked receptor that modulates cell adhesion/migration and fibrinolysis. We mapped the interaction sites between soluble uPAR (suPAR) and high molecular mass kininogen (HK). Binding of biotin-HK to suPAR was inhibited by HK, 56HKa, and 46HKa with an IC50 of 60, 110, and 8 nm, respectively. We identified two suPAR-binding sites, a higher affinity site in the light chain of HK and 46HKa (His477-Gly496) and a lower affinity site within the heavy chain (Cys333-Lys345). HK predominantly bound to suPAR fragments containing domains 2 and 3 (S-D2D3). Binding of HK to domain 1 (S-D1) was also detected, and the addition of S-D1 to S-D2D3 completely inhibited biotin-HK or -46HKa binding to suPAR. Using sequential and overlapping 20-amino acid peptides prepared from suPAR, two regions for HK binding were identified. One on the carboxyl-terminal end of D2 (Leu166-Thr195) blocked HK binding to suPAR and to human umbilical vein endothelial cells (HUVEC). This site overlapped with the urokinase-binding region, and urokinase inhibited the binding of HK to suPAR. A second region on the amino-terminal portion of D3 (Gln215-Asn255) also blocked HK binding to HUVEC. Peptides that blocked HK binding to uPAR also inhibited prekallikrein activation on HUVEC. Therefore, HK interacts with suPAR at several sites. HK binds to uPAR as part of its interaction with its multiprotein receptor complex on HUVEC, and the biological functions that depend upon this binding are modulated by urokinase.  相似文献   

7.
Mesangial cell hexokinase (HK) activity is increased by a diverse array of factors that share both an association with pathological conditions and a common requirement for classic MAPK pathway activation. To better understand the relationship between glucose (Glc) metabolism and injury and to indirectly test the hypothesis that these changes constitute a general adaptive response to insult, we have sought to identify and characterize injury-associated factors that couple to mesangial cell HK regulation. Proinflammatory interleukin-1 (IL-1) cytokines activate the MAPK pathway and have known salutary effects in this cell type. We therefore examined their ability to influence mesangial cell HK activity, Glc utilization, MAPK pathway activation, and individual HK isoform abundance. IL-1beta increased HK activity in both a time- and concentration-dependent manner: activity increased maximally by approximately 50% between 12 and 24 h with an apparent EC(50) of 3 pM. IL-1alpha mimicked, but did not augment, the effects of IL-1beta. Specific IL-1 receptor antagonism and selective MAPK/ERK kinase or upstream Ras inhibition prevented these increases, whereas PKC inhibition did not. Changes in HK activity were associated with both increased Glc metabolism and selective increases in HKII isoform abundance. We conclude that IL-1 cytokines can regulate cellular Glc phosphorylating capacity via an IL-1 receptor-, Ras-, and classic MAPK pathway-mediated increase in HKII abundance. These findings suggest a novel, previously undescribed mechanism whereby metabolism may be coupled to inflammation and injury.  相似文献   

8.
9.
We have amplified and sequenced the complete coding region of bovine hexokinase isoenzyme 1 (HK1) from brain RNA with PCR primers selected for sequence conservation. The sequence information was analyzed to evaluate the evolutionary and structure-function relationships among the mammalian and yeast HK isoenzymes. Structure to function analysis identified an unduplicated, invariant N-terminal domain involved in HK1 outer mitochondrial membrane targeting, as well as putative carbohydrate and nucleotide-binding sites in the regulatory and catalytic halves of HK1 essential to enzyme function. The ATP-binding site in the catalytic half of the HK1 protein resembles nucleotide-binding regions from protein kinases, with the single amino acid replacement (lysine to glutamate) in the ATP-binding site of the amino half explaining the loss of HK1 catalytic function in the regulatory domain. Sequence comparisons suggest that the 50-kDa mammalian and yeast glucokinases arose separately in evolution. In addition to providing valuable phylogenetic and structure-function insights, this work provides an efficient strategy for rapid cloning and sequencing of the coding regions for other HKs and related proteins.  相似文献   

10.
Characterization of isoforms of hexose kinases in rice embryo   总被引:1,自引:0,他引:1  
Hexose kinases in rice embryos have been characterized. Six isoforms were detected: i.e. three glucokinases (GK1-3), two hexokinases (HK1 and HK2) and one fructokinase (FK1). Out of these, GK3, HK1 and HK2 were inhibited by mannoheptulose and glucosamine, known inhibitors of hexokinase activity. These inhibitors are also known to be modulators of sugar sensing processes. The results suggest that GK3, HK1 and HK2 may play a role in sensing the cellular sugar status in the rice embryo.  相似文献   

11.
Objective: To study the effects of xanthohumol (XN), a flavonoid found in hops (Humulus lupulus) and honokiol (HK), a lignan isolated from Magnolia officinalis, alone and in combination, on apoptotic signaling in 3T3‐L1 adipocytes. Methods and Procedures: 3T3‐L1 mature adipocytes were incubated with various concentrations of XN and HK alone and in combination. Viability and apoptosis were quantified using an MTS‐based cell viability assay and single‐stranded DNA assay, respectively. Expression of apoptosis related proteins including cleaved poly(ADP‐ribose) polymerase (PARP), cytochrome c, Bcl‐2, caspase‐3/7, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and Akt was analyzed by western blotting. Results: Combinations of XN and HK significantly decreased viability and induced apoptosis in a dose‐dependent manner and more than the additive responses to XN and HK alone. Western blot analysis showed an increase in cleaved PARP and cytochrome c release and decrease in expression of Bcl‐2 protein by XN plus HK, whereas XN and HK individually had no effect. Furthermore, the combination of XN and HK activated PTEN and inactivated Akt by decreasing levels of phosphorylated PTEN and phosphorylated Akt. Discussion: We demonstrated that although XN and HK showed little or no effect as individual compounds, in combination (XN plus HK) they showed enhanced activity in inducing apoptosis via the cytochrome c/caspase‐3/PARP and PTEN/Akt pathways in 3T3‐L1 adipocytes.  相似文献   

12.
 Mammalian hexokinase types one and three (HK1 and HK3) are 100 kDa isozymes that phosphorylate glucose to glucose-6-phosphate. HK1 is present in most tissues but is especially prominent in brain and kidney. HK3 is less well studied, but may be most prominent in the spleen and lymphocytes. In this study, we determined the ontogeny of the expression of these isoforms in the rat. Using immunohistochemistry, we identified HK1 and HK3 immunoreactivity in the brain, heart, kidney, liver, skeletal muscle and spleen from gestational day 14 (E14) to 45 days after birth (P45). With the exception of the liver and spleen, we observed a similar age- and cell-dependent staining pattern for both isoforms in all organs studied. The brain and spleen were analyzed in more detail to identify specific regions of immunoreactivity during maturation. A transient expression of HK1 and HK3 was noted in the cell bodies of mature neurons, including layers V and VI of the cerebral cortex and the cerebellar Purkinje cells followed by localization to the white matter of the cerebrum and cerebellum. In the spleen, HK3 immunoreactivity was detected postnatally and appeared to track with the infiltration of B cells. Our demonstration of changing patterns of immunoreactivity for HK1 and HK3 in fetal and postnatal organs suggests that these HK isoforms are involved the process of development. We speculate that HK1 and HK3 share a complex interaction during development of these organs and regulate glucose metabolism at multiple levels during development. Accepted: 16 May 1997  相似文献   

13.
14.
In this study, we used endostatin (ES)-induced apoptosis of endothelial cells to study the role of Hexokinase2 (HK2) in the control of angiogenesis in melanoma. Real-time polymerase chain reaction and Western blot analysis were performed to explore the effect of HK2, lactate, and ES on the levels of caspase-9/3, ATP, and p38/MAPK activation. ES increased the levels of caspase-9/3 while decreasing the level of ATP, whereas ES + HK2 and lactate both restored the normal levels of caspase-9/3 and ATP. In addition, cells transfected with HK2 short hairpin RNA1 (HK2shRNA1) and HK2shRNA2 showed an evident decrease in the levels of caspase-9/3 along with an obvious increase in the level of ATP. Knockdown of HK2 also increased O2 consumption while decreasing the extracellular level of lactate and the phosphorylation of p38-mitogen-activated protein kinase (MAPK). On the other hand, the lactate treatment elevated the phosphorylation of p38-MAPK under time- and concentration-dependent manner. In the study, we clarified the role of HK2 in the control of apoptosis of ECs, which plays an important role in the angiogenesis of melanoma by promoting aerobic glycolysis and activating the p38-MAPK signaling.  相似文献   

15.
Leukocyte-platelet interaction is important in mediating leukocyte adhesion to a thrombus and leukocyte recruitment to a site of vascular injury. This interaction is mediated at least in part by the beta2-integrin Mac-1 (CD11b/CD18) and its counter-receptor on platelets, glycoprotein Ibalpha (GPIbalpha). High molecular weight kininogen (HK) was previously shown to interact with both GPIbalpha and Mac-1 through its domains 3 and 5, respectively. In this study we investigated the ability of HK to interfere with the leukocyte-platelet interaction. In a purified system, HK binding to GPIbalpha was inhibited by HK domain 3 and the monoclonal antibody (mAb) SZ2, directed against the epitope 269-282 of GPIbalpha, whereas mAb AP1, directed to the region 201-268 of GPIbalpha had no effect. In contrast, mAb AP1 inhibited the Mac-1-GPIbalpha interaction. Binding of GPIbalpha to Mac-1 was enhanced 2-fold by HK. This effect of HK was abrogated in the presence of HK domains 3 or 5 or peptides from the 475-497 region of the carboxyl terminus of domain 5 as well as in the presence of mAb SZ2 but not mAb AP1. Whereas no difference in the affinity of the Mac-1-GPIbalpha interaction was observed in the absence or presence of HK, maximal binding of GPIbalpha to Mac-1 doubled in the presence of HK. Moreover, HK/HKa increased the Mac-1-dependent adhesion of myelomonocytic U937 cells and K562 cells transfected with Mac-1 to immobilized GPIbalpha or to GPIbalpha-transfected Chinese hamster ovary cells. Finally, Mac-1-dependent adhesion of neutrophils to surface-adherent platelets was enhanced by HK. Thus, HK can bridge leukocytes with platelets by interacting via its domain 3 with GPIbalpha and via its domain 5 with Mac-1 thereby augmenting the Mac-1-GPIbalpha interaction. These distinct molecular interactions of HK with leukocytes and platelets contribute to the regulation of the adhesive behavior of vascular cells and provide novel molecular targets for reducing atherothrombotic pathologies.  相似文献   

16.
Substance P (SP) belongs to the tachykinin family of molecules. SP, cleaved from preprotachykinin A, is a neuropeptide and a proinflammatory leukocyte product. SP engages neurokinin 1 receptor (NK-1R) to stimulate cells. Hemokinin (HK) is another tachykinin that binds NK-1R. HK comes from preprotachykinin C, which is distinct from preprotachykinin A. We determined whether HK functions like SP at inflammatory sites. Preprotachykinin C mRNA was in murine schistosome granulomas and intestinal lamina propria mononuclear cells. Granuloma T cells and macrophages expressed preprotachykinin C mRNA. HK bound granuloma T cell NK-1R with high affinity. SP and HK stimulated IFN-gamma production with equal potency. NK-1R antagonist blocked the effect of SP and HK on IFN-gamma secretion. Thus, both HK and SP are expressed at sites of chronic inflammation and share cell origin, receptor, and immunoregulatory function. Two distinct but functionally overlapping tachykinins govern inflammation through NK-1R at sites of chronic inflammation.  相似文献   

17.
The development and progression of hepatocellular carcinoma (HCC) have been associated with abnormal cellular metabolism. Gene Expression Profiling Interactive Analysis RNA sequencing data revealed caveolin-1 (CAV-1) and hexokinase 2 (HK2) messenger RNA (mRNA) were significantly upregulated in human HCC compared with normal tissues, and high HK2 expression was associated with significantly poorer overall survival in HCC ( p < 0.05). CAV-1 and HK2 mRNA and protein expression were upregulated and positively correlated in 42 fresh human HCC tissues compared with tumor-adjacent normal tissues. Overexpression of CAV-1 or HK2 in SMMC-7721 and HepG2 HCC cells enhanced glucose and lactate metabolism and increased cell migration and invasion in transwell assays; knocking down CAV-1 or HK2 had the opposite effects. Overexpression of CAV-1 increased HK2 expression; overexpression of HK2 did not affect CAV-1 expression. Knocking down HK2 partially reversed the ability of CAV-1 to promote cellular metabolism, invasion, and migration in HCC, indicating CAV-1 enhances glycolysis, invasion, and metastasis in HCC cells via HK2-dependent mechanism. Further studies of the function and relationship between CAV-1 or HK2 expression are warranted to explore the potential of these proteins as metabolic targets for the treatment of HCC.  相似文献   

18.
Hexokinase (HK) was isolated from hind leg skeletal muscle of the wood frog, Rana sylvatica, a freeze tolerant species that uses glucose as a cryoprotectant. Analysis of kinetic parameters (K(m) and V(max)) of HK showed significant increases in K(m) glucose (from 144 ± 4.4 to 248 ± 1 2.0 μM) and K(m) ATP (from 248 ± 8.5 to 330 ± 20.9 μM), as well as a decrease in V(max) (from 86.1 ± 0.40 to 52 ± 0.49 mUmg(-1) of protein) in frogs following freezing exposure, indicating lower affinity for HK substrates and lower enzyme activity in this state. Subsequent analyses indicated that differential phosphorylation of HK between the two states was responsible for the altered kinetic properties. HK was analyzed by SDS-PAGE; phosphoprotein staining revealed a 33% decrease in phosphate content of HK from frozen frogs but immunoblotting showed no change in total HK protein content. Muscle extracts from control and frozen frogs were incubated with ions and second messengers to stimulate the actions of protein kinases and protein phosphatases, with results indicating that HK can be phosphorylated by protein kinases A and C, and AMP-activated protein kinase, and can be dephosphorylated by protein phosphatases 1, 2A and 2C. The data indicate that in control frogs, HK is in a higher phosphate form and displays a high substrate affinity and high activity, whereas in frozen frogs HK is less phosphorylated, with lower substrate affinity and lower activity. Studies also showed that HK affinity for ATP decreases further in response to low temperature, but that high cryoprotective glucose concentrations can prevent these changes in affinity. Finally, the activity and structure of HK from frozen frogs is more sensitive to non-compatible osmolytes than the enzyme in control frogs.  相似文献   

19.
Factor XI (FXI), the zymogen of the blood coagulation protease FXIa, and the structurally homologous protein plasma prekallikrein circulate in plasma in noncovalent complexes with H-kininogen (HK). HK binds to the heavy chains of FXI and of prekallikrein. Each chain contains four apple domains (F1-F4 for FXI and P1-P4 for prekallikrein). Previous studies indicated that the HK-binding site on FXI is located in F1, whereas the major HK-binding site on prekallikrein is in P2. To determine the contribution of each FXI apple domain to HK-FXI complex formation, we examined binding of recombinant single apple domain-tissue plasminogen activator fusion proteins to HK. The order of affinity from highest to lowest is F2 F4 > F1 F3. Monoclonal antibodies against F2 are superior to F4 or F1 antibodies as inhibitors of HK binding to FXI. Antibody alphaP2, raised against prekallikrein, cross-reacts with FXI F2 and inhibits FXI-HK binding with an IC(50) of 8 nm. HK binding to a platelet-specific FXI variant lacking the N-terminal half of F2 is reduced > 5-fold compared with full-length FXI. A chimeric FXI molecule in which F2 is replaced by P2 is cleaved within P2 during activation by factor XIIa, resulting in greatly reduced HK binding capacity. In contrast, wild-type FXI is not cleaved within F2, and its binding capacity for HK is unaffected by factor XIIa. Our data show that HK binding to FXI involves multiple apple domains, with F2 being most important. The findings demonstrate a similarity in mechanism for FXI and prekallikrein binding to HK.  相似文献   

20.
Ferritin is a protein principally known for its role in iron storage. We have previously shown that ferritin can bind high-molecular-weight kininogen (HK). Upon proteolytic cleavage by the protease kallikrein, HK releases the proinflammatory peptide bradykinin (BK) and other biologically active products, such as two-chain high-molecular-weight kininogen, HKa. At inflammatory sites, HK is oxidized, which renders it a poor substrate for kallikrein. However, oxidized HK remains a good substrate for elastase and tryptase, thereby providing an alternative cleavage mechanism for HK during inflammation. Here we report that ferritin can retard the cleavage of both native HK and oxidized HK by elastase and tryptase. Initial rates of cleavage were reduced 45-75% in the presence of ferritin. Ferritin is not a substrate for elastase or tryptase and does not interfere with the ability of either protease to digest a synthetic substrate, suggesting that ferritin may impede HK cleavage through direct interaction with HK. Immunoprecipitation and solid phase binding studies reveal that ferritin and HK bind directly with a Kd of 134 nM. To test whether ferritin regulates HK cleavage in vivo, we used THP-1 cells, a human monocyte/macrophage cell line that has been used to model pulmonary inflammatory cells. We observed that ferritin impedes the cleavage of HK by secretory proteases in stimulated macrophages. Furthermore, ferritin, HK, and elastase are all present in or on alveolar macrophages in a mouse model of pulmonary inflammation. Collectively, these results implicate ferritin in the modulation of HK cleavage at sites of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号