首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Antibodies were used to probe the degree of association of starch biosynthetic enzymes with starch granules isolated from maize (Zea mays) endosperm. Graded washings of the starch granule, followed by release of polypeptides by gelatinization in 2% sodium dodecyl sulfate, enables distinction between strongly and loosely adherent proteins. Mild aqueous washing of granules resulted in near-complete solubilization of ADP-glucose pyrophosphorylase, indicating that little, if any, ADP-glucose pyrophosphorylase is granule associated. In contrast, all of the waxy protein plus significant levels of starch synthase I and starch branching enzyme II (BEII) remained granule associated. Stringent washings using protease and detergent demonstrated that the waxy protein, more than 85% total endosperm starch synthase I protein, and more than 45% of BEII protein were strongly associated with starch granules. Rates of polypeptide accumulation within starch granules remained constant during endosperm development. Soluble and granule-derived forms of BEII yielded identical peptide maps and overlapping tryptic fragments closely aligned with deduced amino acid sequences from BEII cDNA clones. These observations provide direct evidence that BEII exits as both soluble and granule-associated entities. We conclude that each of the known starch biosynthetic enzymes in maize endosperm exhibits a differential propensity to associate with, or to become irreversibly entrapped within, the starch granule.  相似文献   

4.
We have investigated the nature and locations of isoforms of starch synthase in the developing endosperm of wheat (Triticum aestivum L.). There are three distinct granule-bound isoforms of 60 kDa (the Waxy gene product), 77 kDa and 100–105 kDa. One of these isoforms, the 77-kDa protein, is also present in the soluble fraction of the endosperm but it contributes only a small proportion of the total soluble activity. Most of the soluble activity is contributed by isoforms which are apparently not also granule-bound. The 60-kDa and 77kDa isoforms of wheat are antigenically related to isoforms of very similar size in the developing pea embryo, but the other isoforms in the endosperm appear to have no counterparts in the pea embryo. The significance of these results in terms of the diversity of isoforms of starch synthase and their locations is discussed.Abbreviations DEAE diethylaminoethyl - GBSS granule-bound starch synthase - NT nullisomictetrasomic We are grateful to the late John Hawker (University of Adelaide, Australia) and to John Snape (John Innes Centre, UK) for useful discussions during the course of this work, to John Snape and Catherine Chinoy (John Innes Centre, UK) for the gift of the NT lines and to Richard Batt (University of Adelaide, Australia) for technical assistance.  相似文献   

5.
Lin BY 《Genetics》1982,100(3):475-486
Among 38 reciprocal translocations between the maize B chromosome and the proximal region of the long arm of chromosome 10 were six interchanges associated with reduced endosperm development. These six have breakpoints that are the most proximal of the set and constitute a graded series with those broken nearer the centromere which have the most abnormal phenotypes. The group of six defines three major regions that produce the endosperm effects. The remaining 32 translocations reduce kernel size very slightly, suggesting the presence of a fourth region distal to all break-points.-The affected class of kernels lacks a paternally derived representative of that segment of 10L translocated to the B centromeric element (B(10) chromosome; 10 10 B(10)). An accompanying class of kernel in which the paternal B(10) chromosome is duplicated in the endosperm (10 10 10(B) B(10) B(10)) is normal. Kernels of the same endosperm constitution synthesized by introducing both 10 and B(10) maternally, however, are defective, resembling 10 10 10(B). Maternal B(10)'s are therefore unable to compensate for the absence of a paternal B(10). Clearly expression of the 10L genes involved supports normal endosperm growth only following pollen transmission.  相似文献   

6.
Starch synthase (SS) I and IIIa are the first and second largest components of total soluble SS activity, respectively, in developing japonica rice (Oryza sativa L.) endosperm. To elucidate the distinct and overlapping functions of these enzymes, double mutants were created by crossing the ss1 null mutant with the ss3a null mutant. In the F(2) generation, two opaque seed types were found to have either the ss1ss1/SS3ass3a or the SS1ss1/ss3ass3a genotype. Phenotypic analyses revealed lower SS activity in the endosperm of these lines than in those of the parent mutant lines since these seeds had different copies of SSI and SSIIIa genes in a heterozygous state. The endosperm of the two types of opaque seeds contained the unique starch with modified fine structure, round-shaped starch granules, high amylose content, and specific physicochemical properties. The seed weight was ~90% of that of the wild type. The amount of granule-bound starch synthase I (GBSSI) and the activity of ADP-glucose pyrophosphorylase (AGPase) were higher than in the wild type and parent mutant lines. The double-recessive homozygous mutant prepared from both ss1 and ss3a null mutants was considered sterile, while the mutant produced by the leaky ss1 mutant×ss3a null mutant cross was fertile. This present study strongly suggests that at least SSI or SSIIIa is required for starch biosynthesis in rice endosperm.  相似文献   

7.
Soluble starch synthase (SSS, EC 2.4.1.21) catalyzes formation of the α-1,4 bonds of amylopectin. It occurs in multiple isozymes which are either type I, primer-independent in the presence of citrate, or type II. always primer-dependent. To analyze the enzyme. a sensitive native gel assay was developed, monitoring ADP-[14C]glucose incorporation into insoluble α-glucan in the presence of either sodium citrate or glycogen primer or both. Using this system, we observed multiple type I and type II forms in developing grains of barley ( Hordeum vulgare L.) cv. Bomi, the relative activities of which vary with seed development. At least one form comigrates in native gels with starch branching enzyme. Assays of the shx mutant, which is severely reduced in starch accumulation and in type I SSS activity, indicate that one type I isozyme becomes primer-dependent.  相似文献   

8.
Starch quality is one of the most important agronomic traits in Asian rice, Oryza sativa. Starch synthase IIa (SsIIa) is a major candidate gene for starch quality variation. Within SsIIa, three nonsynonymous mutations in exon 8 have been shown to affect enzyme activity when expressed in Escherichia coli. To search for the variation in SsIIa that is responsible for starch quality variation in rice, we sequenced the SsIIa exon 8 region and measured starch quality as starch disintegration in alkali for 289 accessions of cultivated rice and 57 accessions of its wild ancestor, Oryza rufipogon. A general linear model and nested clade analysis were used to identify the associations between the three nonsynonymous single nucleotide polymorphisms (SNPs) and starch quality. Among the three nonsynonymous SNPs, we found strong evidence of association at one nucleotide site ('SNP 3'), corresponding to a Leu/Phe replacement at codon 781. A second SNP, corresponding to a Val/Met replacement at codon 737, could potentially show an association with increased sample sizes. Variation in SsIIa enzyme activity is associated with the cohesiveness of rice grains when cooked, and our findings are consistent with selection for more cohesive grains during the domestication of tropical japonica rice.  相似文献   

9.
Glutamate synthase activity was demonstrated in the developing endosperm of maize (Zea mays L.). The enzyme shows specificity for glutamine and alpha-ketoglutarate as amino donor and acceptor, respectively. Both NADH and NADPH function as electron donors although lower activities were often, but not always, obtained with NADPH. The apparent K(m) values for glutamine, alpha-ketoglutarate, and NADH were 1.35 mm, 0.57 mm, and 7 mum, respectively.The pattern of activity during endosperm development revealed a well defined peak coinciding with the period of most active N accumulation. Activity in general was related to the rates of accumulation throughout development. Maximum glutamate synthase activity was the order of 56 nmoles of glutamate formed per minute per endosperm compared with a rate of N accumulation of 9.5 nmoles per minute.It is suggested that glutamate synthase plays a key role in the N nutrition of the maize endosperm providing a means whereby N transported in the form of glutamine is made available for the synthesis of other seed protein amino acids via transaminase reactions. Transaminase activity involving glutamate, the product of the glutamate synthase reaction, was also demonstrated.  相似文献   

10.
11.
A heterodimeric napin-like polypeptide was isolated from Brassica parachinensis seeds with a procedure involving ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, FPLC-ion exchange chromatography on Mono S and FPLC-gel filtration on Superdex 75. The N-terminal sequence of the 5 kDa subunit of the polypeptide (PAGPFRIPKKRKKEE) showed high homology with other 2S storage proteins like napins and albumins. The polypeptide potently inhibited translation in a cell free system with an IC50 of 6.2 nM. The translation-inhibiting activity of the polypeptide was relatively stable in the pH range 6-11 and in the temperature range 10-50 degrees C.  相似文献   

12.
The present study shows that rat liver and brain mitochondrial nitric oxide synthase (mtNOS) are functionally associated with mitochondrial respiratory chain complex I. When complex I is activated, mtNOS exerts high activity and generates nitric oxide, whereas inactivation of complex I leads mtNOS to abandon its NOS activity. Functional association of mtNOS with complex I is potentially important in regulating mtNOS activity and mitochondrial functions.  相似文献   

13.
A full-length cDNA clone encoding a soluble starch synthase I (SSSI) from Amaranthus cruentus L. was isolated and characterized. The cDNA clone is 2,076?bp in length and contains an open reading frame of 1,821?bp that encodes 606 amino acid residues. Comparison of the cDNA and genomic sequences indicated that the amaranth SSSI gene contains 14 introns, of which exons 1?C15 contribute to the coding sequence. Sequencing of the cloned cDNA showed that it has 65.1% identity with Arabidopsis SSSI and 61.1?C64.7% identity with SSSI genes from other plant species. Comparison of the SSSI locus from 24 amaranth accessions of diverse geographical provenances revealed a high level of nucleotide polymorphism. A total of 54 single nucleotide polymorphisms and 17 insertions/deletions were identified, which were classifiable into eight different molecular types. Of these types, Type VIII was detected only in Old World accessions. Expression pattern analysis showed that the SSSI gene is expressed constitutively during seed maturation. In addition, this gene was expressed well in different organs including the leaf, petiole, stem and root. This finding indicated that expression of SSSI is not specific to non-storage or storage tissues in A. cruentus.  相似文献   

14.
Peroxidase (EC 1.11.1.7) activity from homogenized tissue or in apoplastic fluid was analyzed along the developmental gradient of expanding B73 maize ( Zea mays L.) leaf blades. Soluble plus ionically bound peroxidase activity from homogenized tissue was present in high levels at the leaf base, which includes the region of cell division, and decreased as tissue was displaced away from the base by growth. A different pattern of change in peroxidase activity was seen in apoplastic fluid extracted from segments of intact tissue, where an increase in peroxidase activity preceded a rapid decrease in leaf elongation rate. Similar patterns in peroxidase activity from homogenized and intact tissue have been found in leaf blades of tall fescue ( Festuca arundinacea Schreb.), suggesting a common phenomenon. At the location within the elongation zone where the increase in apoplastic peroxidase activity occurred, the activities of neutral and acidic (pl 4.6) peroxidase isoforms were also elevated in both the homogenate and in apoplastic fluid. The coincidence of these isoforms with the decline in leaf elongation rate suggests they may contribute to cessation of growth. At the distal end of the elongation zone, the activities of other acidic peroxidases (pI 5.6 and 5.7) increased in the homogenate and in apoplastic fluid, and remained elevated as tissue was displaced into the maturation region. The location of their appearance and their relatively high activity in the maturation region suggest the involvement of these isoforms in lignification.  相似文献   

15.
Two novel type I casein kinases named CK-1B and CK-1C have been purified from maize endosperm (three weeks after anthesis) by a six step procedure involving ammonium sulfate precipitation, DEAE-cellulose, Sephadex G-75, Heparin-sepharose, and ATP-agarose chromatography. The catalytic subunits of both enzymes were identified as a 35-37 kDa polypeptide doublet by in situ phosphorylation after SDS/PAGE in active casein gel. Both enzymes required 5-10 mmol · L−1 Mg2+ for maximal activity, could utilize only ATP as phosphate donor, were insensitive to heparin, were not autophosphorylated, had a pH optimum at pH 7 to 8.5, and exclusively phosphorylated acidic proteins (casein, phosvitin). Regarding the enzyme differences, their properties were as follows: a) CK-1B could bind on ATP-agarose affinity column, while CK-1C could not; b) the activity of CK-1C was strongly stimulated at low concentrations (1 mmol/L) of spermine, while that of CK-1B was inhibited; c) CK-1B and CK-1C Km values for ATP were 11 μmol · L−1 and 26 μmol · L−1, respectively; d) Mg2+ could substituted by Mn2+ in the CK-1B catalytic activity (by about 80 percnt;); e) CK-1B phosphorylated serine, while CK-1C both serine and threonine on casein. The combination of these results with those from Babatsikos and Yupsanis (2000) brings the number of investigated maize endosperm CK-I isoforms to three (CK-1B, CK-1C, and CK-1E). This is the first biochemical approach demonstrating that multiple isoforms of CK-I casein kinases are present in the same plant tissue.  相似文献   

16.
BALB/c mice were immunized with peroxisomal membranes prepared from rat liver. Spleen cells were fused with myeloma cells (P3/U1) and the hybridomas were selected using peroxisomal membranes. A monoclonal antibody (PXM1a/207B) which recognized peroxisomal membranes was selected. Using the antibody, a novel 57 kDa polypeptide was identified in the peroxisomal membrane fraction. Immunoblot analysis of the subcellular fractions demonstrated that the 57 kDa polypeptide was present exclusively in peroxisomal membranes. The 57 kDa polypeptide was partially digested by trypsin and chymotrypsin under conditions where peroxisomal particles remained intact, indicating that the polypeptide is exposed to the cytosolic face of the peroxisomal membrane. The amount of 57 kDa polypeptide increased in parallel with proliferation of peroxisomes by administration of clofibrate.  相似文献   

17.
Starch synthase I (SSI) from various sources has been shown to preferentially elongate branch chains of degree of polymerisation (DP) from 6–7 to produce chains of DP 8–12. In the recently determined crystal structure of barley starch synthase I (HvSSI) a so-called surface binding site (SBS) was seen, which was found by mutational analysis to be essential for the activity of HvSSI on glycogen. We now show in binding studies using surface plasmon resonance that HvSSI has no detectable affinity for malto-triose and -tetraose, but clearly binds maltopentaose, -hexaose, -heptaose (M7) and β-cyclodextrin (β-CD) albeit with a measurable K D for only β-CD and M7. Moreover, an HvSSI SBS mutant F538A lost the ability to bind β-CD and maltooligosaccharides. This behaviour suggests that a chain in the α-glucan molecule (amylopectin) that is undergoing extension attaches itself at the SBS and that the active site itself, likely working on a different end chain, has low affinity for both substrate and product.  相似文献   

18.
A 31 kDa polypeptide that accumulates in the thylakoids when maize leaves are chilled to 5°C in the light is characterized using monoclonal antibodies and analyses of chlorophyll-protein complexes. This polypeptide reacted with a monoclonal antibody, MLH2, that was specific for the 28 kDa polypeptide of the light-harvesting complex (LHCII) of pea leaves. On chilling leaves the appearance of a chlorophyll-protein complex having an apparent molecular weight of 31 kDa coincided with the appearance of a 31 kDa polypeptide and a decrease in the 29 kDa chlorophyll-protein, CP29. Returning the leaves to 25°C for 1 h produced a loss of both the 31 kDa chlorophyll-protein and 31 kDa polypeptide from the thylakoids, and an increase in the amount of CP29. Breakdown of the 31 kDa polypeptide in vitro was Mg2+-dependent and inhibited by EDTA and transition metal ions. It is suggested that the 31 kDa polypeptide may be a precursor of the apoprotein of CP29 and can bind chlorophyll. The appearance of the 31 kDa polypeptide correlated with a marked change in the 77 K fluorescence emission spectra of isolated LHCII particles, which did not revert with the disappearance of the 31 kDa on returning the leaves to 25°C for 1 h. The physiological significance of this spectral perturbation is discussed.  相似文献   

19.
The technology of converting lignocellulose to biofuels has advanced swiftly over the past few years, and enzymes are a significant constituent of this technology. In this regard, cost effective production of cellulases has been the focus of research for many years. One approach to reach cost targets of these enzymes involves the use of plants as bio-factories. The application of this technology to plant biomass conversion for biofuels and biobased products has the potential for significantly lowering the cost of these products due to lower enzyme production costs. Cel6A, one of the two cellobiohydrolases (CBH II) produced by Hypocrea jecorina, is an exoglucanase that cleaves primarily cellobiose units from the non-reducing end of cellulose microfibrils. In this work we describe the expression of Cel6A in maize endosperm as part of the process to lower the cost of this dominant enzyme for the bioconversion process. The enzyme is active on microcrystalline cellulose as exponential microbial growth was observed in the mixture of cellulose, cellulases, yeast and Cel6A, Cel7A (endoglucanase), and Cel5A (cellobiohydrolase I) expressed in maize seeds. We quantify the amount accumulated and the activity of the enzyme. Cel6A expressed in maize endosperm was purified to homogeneity and verified using peptide mass finger printing.  相似文献   

20.
In 2009, the draft genome of the reference inbred line of maize (Zea mays L. spp. mays cv. B73) was published so that, using this specific corn variety, molecular analyses of physiological processes became possible. However, the morphology and developmental patterns of B73 maize, compared with that of the more frequently used hybrid varieties, have not yet been analyzed. Here, we describe organ development in seedlings of B73 maize and in those of six other hybrid cultivars, and document significant morphological as well as quantitative differences between these varieties of Z. mays. In a second set of experiments, we used etiolated seedlings of B73 maize to analyze the effect of blue light (BL) on the patterns of proteins in the tip vs. growing region of this sheath-like organ. By using two-dimensional difference gel electrophoresis (2D DIGE), coupled with tandem mass spectrometry, we detected, in the microsomal fraction of maize coleoptile tips, rapid changes in the abundance of protein spots of maize phototropin 1 and several metabolic enzymes. In the sub-apical (growing) region of the coleoptile, proteomic changes were less pronounced. These results suggest that the tip of the coleoptile of B73 maize may serve as a unique model system for dissecting BL responses in a light-sensitive plant organ of known function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号